
UNIVERSITY OF MARYLAND
DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

ENEE 457
Computer Systems Security

Instructor: Charalampos Papamanthou

Programming Project 2: Symmetric Encryption Lab
Out: 09/13/18 Due: 09/21/18 11:59pm

Instructions
1. Strictly adhere to the University of Maryland Code of Academic Integrity.

2. Submit your solutions as a pdf document at Canvas. Include your full name in the solutions
document. Name the solutions document as x-project2.pdf, where x is your last name.

Partly taken from SEED labs http://www.cis.syr.edu/˜wedu/seed/

1 Overview
The learning objective of this lab is for students to get familiar with the concepts in the secret-
key encryption. After finishing the lab, students should be able to gain a first-hand experience on
encryption algorithms and encryption modes. Moreover, students will be able to use tools and write
programs to encrypt/decrypt messages.

2 Lab Setup
Installing OpenSSL. In this lab, we will use openssl commands and libraries. We have al-
ready installed openssl binaries in our VM. It should be noted that if you want to use openssl
libraries in your programs, you need to install several other things for the programming environ-
ment, including the header files, libraries, manuals, etc. We have already downloaded the necessary
files under the directory /home/seed/openssl-1.0.1. To configure and install openssl
libraries, go to the openssl-1.0.1 folder and run the following commands.

You should read the INSTALL file first:
% sudo ./config
% sudo make
% sudo make test
% sudo make install

Installing a hex editor. In this lab, we need to be able to view and modify files of binary format.
For this purpose, you can install Bless by using the following command:

% sudo apt-get install bless

ENEE 457 — Computer Systems Security Fall Semester, 2018

http://www.president.umd.edu/policies/docs/III-100A.pdf
https://umd.instructure.com/login
http://www.cis.syr.edu/~wedu/seed/


2

3 Lab Tasks
3.1 Task 1: Encryption using different ciphers and modes
In this task, we will play with various encryption algorithms and modes. You can use the follow-
ing openssl enc command to encrypt/decrypt a file. To see the manuals, you can type man
openssl and man enc.

% openssl enc ciphertype -e -in plain.txt -out cipher.bin \
-K 00112233445566778889aabbccddeeff \
-iv 0102030405060708

Please replace the ciphertype with a specific cipher type, such as -aes-128-cbc,
-aes-128-cfb, -bf-cbc, etc. In this task, you should try at least 3 different ciphers and
three different modes. You can find the meaning of the command-line options and all the supported
cipher types by typing "man enc". We include some common options for the openssl enc
command in the following:

-in <file> input file
-out <file> output file
-e encrypt
-d decrypt
-K/-iv key/iv in hex is the next argument
-[pP] print the iv/key (then exit if -P)

3.2 Task 2: Encryption Mode – ECB vs. CBC
The file pic original.bmp contains a simple picture. You can find the pic-
ture here: http://www.cis.syr.edu/˜wedu/seed/Labs_12.04/Crypto/Crypto_
Encryption/files/pic_original.bmp. We would like to encrypt this picture, so people
without the encryption keys cannot know what is in the picture. Please encrypt the file using the
ECB (Electronic Code Book) and CBC (Cipher Block Chaining) modes, and then do the following:

1. Let us treat the encrypted picture as a picture, and use a picture viewing software to display
it. However, For the .bmp file, the first 54 bytes contain the header information about the
picture, we have to set it correctly, so the encrypted file can be treated as a legitimate .bmp
file. We will replace the header of the encrypted picture with that of the original picture. You
can use a hex editor tool (e.g. Bless) to directly modify binary files.

2. Display the encrypted picture using any picture viewing software. Can you derive any use-
ful information about the original picture from the encrypted picture? Please explain your
observations.

3.3 Task 3: Encryption Mode – Corrupted Cipher Text
To understand the properties of various encryption modes, we would like to do the following exer-
cise:

1. Create a text file that is at least 64 bytes long.

2. Encrypt the file using the AES-128 cipher.

3. Unfortunately, a single bit of the 30th byte in the encrypted file got corrupted. You can achieve
this corruption using a hex editor.

ENEE 457 — Computer Systems Security Fall Semester, 2018

http://www.cis.syr.edu/~wedu/seed/Labs_12.04/Crypto/Crypto_Encryption/files/pic_original.bmp
http://www.cis.syr.edu/~wedu/seed/Labs_12.04/Crypto/Crypto_Encryption/files/pic_original.bmp


3

4. Decrypt the corrupted file (encrypted) using the correct key and IV.

Please answer the following questions: (1) How much information can you recover by decrypt-
ing the corrupted file, if the encryption mode is ECB, CBC, CFB, or OFB, respectively? Please
answer this question before you conduct this task, and then find out whether your answer is correct
or wrong after you finish this task. (2) Please explain why. (3) What are the implication of these
differences?

3.4 Task 4: Dictionary Attack using the OpenSSL Crypto Library
So far, we have learned how to use the tools provided by openssl to encrypt and decrypt messages.
In this task, we will learn how to use openssl’s crypto library to encrypt/descrypt messages in
programs.

OpenSSL provides an API called EVP, which is a high-level interface to cryptographic func-
tions. Although OpenSSL also has direct interfaces for each individual encryption algorithm, the
EVP library provides a common interface for various encryption algorithms. To ask EVP to use
a specific algorithm, we simply need to pass our choice to the EVP interface. A sample code is
given in http://www.openssl.org/docs/crypto/EVP_EncryptInit.html. Please
get yourself familiar with this program, and then do the following exercise.

You are given a plaintext and a ciphertext, and you know that aes-128-cbc is used to generate
the ciphertext from the plaintext, and you also know that the numbers in the IV are all zeros (not
the ASCII character ‘0’). Another clue that you have learned is that the key used to encrypt this
plaintext is an English word shorter than 16 characters; the word that can be found from a typical
English dictionary. Since the word has less than 16 characters (i.e. 128 bits), space characters
(hexadecimal value 0x20) are appended to the end of the word to form a key of 128 bits. Your goal
is to write a program to find out this key. You can download a English word list from the Internet
but you can also find one here: http://www.cis.syr.edu/˜wedu/seed/Labs_12.04/
Crypto/Crypto_Encryption/files/words.txt.

The plaintext and ciphertext is in the following:

Plaintext (total 21 characters): This is a top secret.
Ciphertext (in hex format): 8d20e5056a8d24d0462ce74e4904c1b5

13e10d1df4a2ef2ad4540fae1ca0aaf9

Note 1: If you choose to store the plaintex message in a file, and feed the file to your program,
you need to check whether the file length is 21. Some editors may add a special character to the end
of the file. If that happens, you can use a hex editor tool to remove the special character.

Note 2: In this task, you are supposed to write your own program to invoke the crypto library. No
credit will be given if you simply use the openssl commands to do this task.

Note 3: To compile your code, you may need to include the header files in openssl, and link
to openssl libraries. To do that, you need to tell your compiler where those files are. In your
Makefile, you may want to specify the following:

INC=/usr/local/ssl/include/
LIB=/usr/local/ssl/lib/

ENEE 457 — Computer Systems Security Fall Semester, 2018

http://www.openssl.org/docs/crypto/EVP_EncryptInit.html
http://www.cis.syr.edu/~wedu/seed/Labs_12.04/Crypto/Crypto_Encryption/files/words.txt
http://www.cis.syr.edu/~wedu/seed/Labs_12.04/Crypto/Crypto_Encryption/files/words.txt


4

all:
gcc -I$(INC) -L$(LIB) -o enc yourcode.c -lcrypto -ldl

3.5 Task 5: Frequency Analysis Attack
Alice and Bob formed a committee to design a secure encryption scheme. Mallory wants to be able
to spy on their communications, so she joined their standards committee and suggested they encrypt
files by splitting the file into blocks of size equal to the length of the key, and then compute a XOR
of each block of the plaintext with the key to get the ciphertext.

Their encryption program in C is given below. It reads the plaintext from stdin and outputs the
ciphertext to stdout:
#include <stdio.h>
#include <unistd.h>

int main() {
char key[8] = {’K’, ’E’, ’Y’, ’ ’, ’H’, ’E’, ’R’, ’E’};
int keylen = 8;
char *buf = malloc(keylen * 512);
int nread;

while (nread = read(0, buf, sizeof(buf))) {
int i;
for (i = 0; i < sizeof(buf); i ++)

buf[i] ˆ= key[i % keylen];
write(1, buf, nread);

}
}

Your task is to help Mallory spy on their communications by writing a program to crack this en-
cryption scheme. You are given two ciphertexts 1.enc and 2.enc that you need to find the key and
plaintext for. In 1.enc, the length of the key is 8 (i.e., the key is 8 bytes). In 2.enc, the length of
the key could be any value less than 30. The bytes of the key can be any value from 0x00 to 0xff.

Hints: First you will probably want to code and test a program to break the following simpler
encryption scheme:

Given a plaintext and a 1-byte key, XOR every byte of the plaintext with the key to get the
ciphertext. This encryption scheme can be attacked by trying to decrypt the ciphertext with all
256 possible keys, and picking the key that gives a character frequency distribution most similar to
english text. The following array will probably be useful:
double freq[] = {0.0651738, 0.0124248, 0.0217339, 0.0349835,

0.1041442, 0.0197881, 0.0158610, 0.0492888,
0.0558094, 0.0009033, 0.0050529, 0.0331490,
0.0202124, 0.0564513, 0.0596302, 0.0137645,
0.0008606, 0.0497563, 0.0515760, 0.0729357,
0.0225134, 0.0082903, 0.0171272, 0.0013692,
0.0145984, 0.0007836, 0.1918182};

In the above array, freq[0] contains what fraction of characters in average english text are the
letter ‘a’, freq[1] is for the letter b and so on.

ENEE 457 — Computer Systems Security Fall Semester, 2018

http://enee457.github.io/homeworks/code/1.enc
http://enee457.github.io/homeworks/code/2.enc


5

4 Submission
Students need to submit a detailed lab report to describe what they have done and what they have
observed. Report should include the evidences to support the observations. Evidences include
source code with appropriate comments, packet traces, screenshots of outputs, etc.

ENEE 457 — Computer Systems Security Fall Semester, 2018


	Overview
	Lab Setup
	Lab Tasks
	Task 1: Encryption using different ciphers and modes
	Task 2: Encryption Mode – ECB vs. CBC
	Task 3: Encryption Mode – Corrupted Cipher Text
	Task 4: Dictionary Attack using the OpenSSL Crypto Library
	Task 5: Frequency Analysis Attack

	Submission

