
ENEE 457: Computer Systems Security

Lecture 18
Computer Networking Basics

Charalampos (Babis) Papamanthou

Department of Electrical and Computer Engineering

University of Maryland, College Park

Computer Networking: The general problem

• Lots of devices, hosts want to communicate with each other

• To exchange data

• To access remote services

• Goal: Universal Communication (from any host to any host)

• How do we design the cloud?

Network

First approach: N^2 links

• Connect every host with each other

• Does not work, too costly, plus hosts come and go, too difficult to manage

• In particular, the complexity is quadratic

Second approach: Share resources

• Share resources through intermediate routers and switches (that is how internet
works)

Two ways for that: Circuit and Packet switching

• Circuit switching

• Legacy phone network

• Single route through sequence of hardware devices established when two nodes start

communication

• Data sent along route

• Route maintained until communication ends

• Packet switching

• Internet

• Data split into packets

• Packets transported independently through network

• Each packet handled on a best efforts basis

• Packets may follow different routes

Packet switching

Host A

Host B
Host E

Host D

Host C

Node 1 Node 2

Node 3

Node 4

Node 5

Node 6 Node 7

• Packets in a flow may not follow the same path (depends on

routing as we will see later) → packets may be reordered

What is the internet?

• Network of Networks based on packet
switching

• Millions of connected computing devices that
can communicate with each other
• Desktops, laptops, smartphones, servers

• Communication links
• fiber, copper, radio, satellite

• Packet switches
• forward packets (chunks of data) between ISPs

• Protocols
• HTTP, TCP, IP

mobile network

global ISP

regional ISP

home
network

institutional
network

Layered organization of Internet

• Internet is complex, with many pieces

• hosts

• routers

• links of various media

• applications

• protocols

• hardware, software

Question:

is there any hope of having an organizing structure of the internet?

…. or at least our discussion of networks

Internet Protocol Stack

• Application layer: supporting network applications

• FTP, SMTP, HTTP

• Transport layer: process-process data transfer

• TCP, UDP

• Network layer: routing of datagrams from source to destination

• IP, routing protocols

• Link layer: data transfer between neighboring network elements

• Ethernet, 802.111 (WiFi),

• Physical layer: bits “on the wire”

application

transport

network

link

physical

application

e-mail

remote terminal access

Web

file transfer

streaming multimedia

Internet telephony

application

layer protocol

SMTP [RFC 2821]

Telnet [RFC 854]

HTTP [RFC 2616]

FTP [RFC 959]

HTTP (e.g., YouTube),

RTP [RFC 1889]

SIP, RTP, proprietary

(e.g., Skype)

underlying

transport protocol

TCP

TCP

TCP

TCP

TCP or UDP

TCP or UDP

Examples

More examples

Application layer

E.g., contains all useful network applications

e.g., FTP, HTTP, SSH, telnet

Transport layer

E.g., contains protocols defining the properties of the connection (e.g., connection

oriented/connectionless)

uses 16-bit addresses (ports)

e.g., TCP, UDP, DSCP (implements congestion control)

Network layer

E.g., contains protocols defining how to route between logical addresses (e.g., IPs)

uses 32-bit internet protocol (IP) addresses in IPv4

128-bit IP addresses in IPv6

Best efforts

e.g., IPv4, IPv6, IPsec (providing security)

Link layer

E.g., contains protocols defining how to route between physical addresses (e.g., MAC

addresses) depending on the physical medium (Ethernet, WiFi, optical fiber)

uses 48-bit media access control (MAC) addresses

Local area network: Packets called frames

e.g., IEEE 802.11 (for wireless)

Physical layer: How to physically send the information

Internet Packet Encapsulation

Application

Packet

TCP Data
TCP

Header

IP
Header

Frame
Header

Frame
Footer Link Layer

Network Layer

Transport Layer

IP Data

Frame Data

Application Layer

Travelling of an email message

• Given the email address and the email program, the application layer will figure
out

• The destination IP (through a DNS query)

• The destination port (e.g., for HTTP it is 80)

• Then various TCP or UDP segments will be created. If it is TCP, then ordering
should be included. If it is UDP, losses can be tolerated

• Then various IP segments will be created, which will be sent at best-effort basis.
This segment will indicate what kind of routing we are doing

Routers and Switches

• Routers are used to route across networks, where I do not know the MAC address
of the machine I am trying to send

• Switches are used to route within LANs where I do know the MAC of the
machine it should go

• E.g.: When I am sending a an email from ece.umd.edu to eecs.mit.edu

• My message will be routed through local switches in my building/office to the router of my
building/office.

• At that point, the router will see that there is no local machine that it knows that can handle
this message, but, based on the IP, it will find another router that can handle this message

• Eventually, the message will get to the router of mit.edu

• And through local switches and other routers will reach the destination

DNS protocol

• It runs at the application layer

• It maps http addresses to IP addresses

ARP (address resolution protocol)

• The address resolution protocol (ARP) connects the network layer to the data layer by
converting IP addresses to MAC addresses

• ARP works by broadcasting requests and caching responses for future use

• The protocol begins with a computer broadcasting a message of the form

who has <IP address1> tell <IP address2>

• When the machine with <IP address1> or an ARP server receives this message, its broadcasts
the response

<IP address1> is <MAC address>

• The requestor’s IP address <IP address2> is contained in the link header

• The Linux and Windows command arp - a displays the ARP table

Internet Address Physical Address Type

128.148.31.1 00-00-0c-07-ac-00 dynamic

128.148.31.15 00-0c-76-b2-d7-1d dynamic

128.148.31.71 00-0c-76-b2-d0-d2 dynamic

128.148.31.75 00-0c-76-b2-d7-1d dynamic

128.148.31.102 00-22-0c-a3-e4-00 dynamic

128.148.31.137 00-1d-92-b6-f1-a9 dynamic

ARP Spoofing

• The ARP table is updated whenever an ARP response is received

• Requests are not tracked

• ARP announcements are not authenticated

• Machines trust each other

• A rogue machine can spoof other machines

ARP Poisoning (ARP Spoofing)

• According to the standard, almost all ARP implementations are stateless

• An arp cache updates every time that it receives an arp reply… even if it did not
send any arp request!

• It is possible to “poison” an arp cache by sending gratuitous arp replies

• Using static entries solves the problem but it is almost impossible to manage!

Application Layer 2-19

Transport layer protocols

TCP :

• reliable transport between
sending and receiving process

• flow control: sender won’t
overwhelm receiver

• congestion control: throttle
sender when network
overloaded

• does not provide: timing,
minimum throughput
guarantee, security

• connection-oriented: setup
required between client and
server processes

UDP :

• unreliable data transfer
between sending and
receiving process

• does not provide:
reliability, flow control,
congestion control,
timing, throughput
guarantee, security,
orconnection setup,

Q: why bother? Why is
there a UDP?

Sniffing Network Packets with Wireshark

Network Security Problems

• The internet was not designed with security in mind

• Bad guys can

• Launch DOS attacks

• Can sniff packets

• Can change the origin destination addresses

• To have security when you use networking, you need to use TLS at the application
layer

• Confidentiality

• Integrity

• Authentication

Transport Vs Network Layer

• Network Layer: Communication between computers (e.g., from IP1 to IP2)

• Transport Layer: Communication between processes (e.g., serving an HTTP
request)

• UDP (unreliable, best-effort)

• TCP (reliable)

TCP protocol

• TCP creates reliable transportation over an unreliable network

TCP seq. #’s and ACKs

Seq. #’s:

• byte stream “number” of
first byte in segment’s data

• It can be used as a pointer
for placing the received data
in the receiver buffer

ACKs:

• seq # of next byte expected
from other side

Host A Host B

User
types
‘C’

host ACKs
receipt
of echoed
‘C’

host ACKs
receipt of
‘C’, echoes
back ‘C’

time
simple telnet scenario

110108

H E L L O W O R L D

101 102 103 104 105 106 107 109 111Byte numbers

Seq no: 101
ACK no: 12
Data: HEL
Length: 3

Seq no: 12
ACK no:
Data:
Length: 0

Seq no: 104
ACK no: 12
Data: LO W
Length: 4

Seq no: 12
ACK no:
Data:
Length: 0

104

108

Seq. #’s:

 byte stream “number” of
first byte in segment’s data

 It can be used as a pointer
for placing the received
data in the receiver buffer

ACKs:

 seq # of next byte
expected from other side

Example: Unidirectional Communication

110108

H E L L O W O R L D

101 102 103 104 105 106 107 109 111Byte numbers
G O O D B U Y

12 13 14 15 16 17 18

Seq no: 101
ACK no: 12
Data: HEL
Length: 3

Seq no:
ACK no:
Data: GOOD
Length: 4

Seq no:
ACK no:
Data: LO W
Length: 4

Seq no:
ACK no:
Data: BU
Length: 2

12
104

104
16

108
16

Bidirectional communication

Timeout

RTO

If an ACK is not received before

RTO (retransmission timeout), a

timeout is declared

Seq no: 101
ACK no: 12
Data: HEL
Length: 3

Seq no: 101
ACK no: 12
Data: HEL
Length: 3

Timeout event:
Retransmit segment

Seq no: 12
ACK no:
Data:
Length: 0

What if timeout is too big?

What is timeout is too small?

Ideally, a timeout should occur right

after an ACK is received…

TCP 3-way handshake

SYNbit=1, Seq=x

choose init seq num, x
send TCP SYN msg

ESTAB

SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1

choose init seq num, y
send TCP SYNACK
msg, acking SYN

ACKbit=1, ACKnum=y+1

received SYNACK(x)
indicates server is live;
send ACK for SYNACK;

this segment may contain
client-to-server data

received ACK(y)
indicates client is live

SYNSENT

ESTAB

SYN RCVD

client state

LISTEN

server state

LISTEN

Closing a TCP connection

FIN_WAIT_2

CLOSE_WAIT

FINbit=1, seq=y

ACKbit=1; ACKnum=y+1

ACKbit=1; ACKnum=x+1

wait for server
close

can still
send data

can no longer
send data

LAST_ACK

CLOSED

TIMED_WAIT

timed wait
for 2*max

segment lifetime

CLOSED

FIN_WAIT_1 FINbit=1, seq=xcan no longer
send but can
receive data

clientSocket.close()

client state server state

ESTABESTAB

SYN-Flooding attack

• After the received receives a SYN message, it allocates space for the connection

• In particular it stores

• IP of sender

• Port of the application

• Maximum segment size for this connection

• Outgoing sequence number (note that I need this sequence number so that when I receive an
ack I know that it refers to a specific TCP segment)

• The attack goes as follows:

• The attacker spoofs a bunch of IPs sends a lot of SYNs

• I reply with a lot of SYN-ACKs (hence I need to store all this information for each
connection)

• But no ACKs will never come back (since the IPs are random)

• Hence I am keeping all these connections open for no reason exhausting my memory

Syn-Flooding attack

How to solve this problem: Syn Cookies

• Do not assign state until you get back the ACK

• But how to you store your generated sequence number?

• Just outsource it on the SYN-ACK message by using a MAC

