
ENEE 459-C

Computer Security

Operating Systems Security

A Computer Model

• An operating system has to deal with the fact
that a computer is made up of a CPU, random
access memory (RAM), input/output (I/O)
devices, and long-term storage.

Disk DriveRAM
CPU

0

1

2

3

4

5

6

7

8

9

.

.

.

I/O

OS Concepts

• An operating system (OS) provides the
interface between the users of a computer
and that computer’s hardware.

– An operating system manages the ways
applications access the resources in a computer,
including its disk drives, CPU, main memory, input
devices, output devices, and network interfaces.

– An operating system manages multiple users.

– An operating system manages multiple programs.

The Kernel
• The kernel is the core component of

the operating system. It handles the
management of low-level hardware
resources, including memory,
processors, and input/output (I/O)
devices, such as a keyboard, mouse,
or video display.

• Most operating systems define the
tasks associated with the kernel in
terms of a layer metaphor, with the
hardware components, such as the
CPU, memory, and input/output
devices being on the bottom, and
users and applications being on the
top.

User Applications

The OS Kernel

CPU, Memory,
Input/Output

Userland

Operating System

Hardware

System Calls

• User applications don’t communicate directly with
low-level hardware components, and instead
delegate such tasks to the kernel via system calls.

• System calls are usually contained in a collection of
programs, that is, a library such as the C library (libc),
and they provide an interface that allows applications
to use a predefined series of APIs that define the
functions for communicating with the kernel.

– Examples of system calls include those for performing file
I/O (open, close, read, write) and running application
programs (exec).

Processes
• A process is an instance of a program

that is currently executing.

• The actual contents of all programs are
initially stored in persistent storage,
such as a hard drive.

• In order to be executed, a program
must be loaded into random-access
memory (RAM) and uniquely identified
as a process.

• In this way, multiple copies of the same
program can be run as different
processes.
– For example, we can have multiple copies of

MS Powerpoint open at the same time.

Process IDs
• Each process running on a given computer is identified by a

unique nonnegative integer, called the process ID (PID).

• Given the PID for a process, we can then associate its CPU
time, memory usage, user ID (UID), program name, etc.

File Systems

• A filesystem is an abstraction of how the external,
nonvolatile memory of the computer is organized.

• Operating systems typically organize files
hierarchically into folders, also called directories.

• Each folder may contain files and/or subfolders.

• Thus, a volume, or drive, consists of a collection of
nested folders that form a tree.

• The topmost folder is the root of this tree and is also
called the root folder.

Memory Management

• The RAM memory of a computer is its address space.

• It contains both the code for the running program, its
input data, and its working memory.

• For any running process, it is organized into different
segments, which keep the different parts of the
address space separate.

• As we will discuss, security concerns require that we
never mix up these different segments.

Virtual Memory

• There is generally not enough
computer memory for the address
spaces of all running processes.

• Nevertheless, the OS gives each
running process the illusion that it has
access to its complete (contiguous)
address space.

• In reality, this view is virtual, in that the
OS supports this view, but it is not
really how the memory is organized.

• Instead, memory is divided into pages,
and the OS keeps track of which ones
are in memory and which ones are
stored out to disk.

ATM

Page Faults

Process

1. Process requests virtual address not in memory,

causing a page fault.

2. Paging supervisor pages out

an old block of RAM memory.

3. Paging supervisor locates requested block

on the disk and brings it into RAM memory.

“read 0110101”

“Page fault,

let me fix that.”

Blocks in

RAM memory:

Paging supervisor

External disk

old

new

Virtual Machines
• Virtual machine: A view that an OS presents that a

process is running on a specific architecture and OS,
when really it is something else. E.g., a windows
emulator on a Mac.

• Benefits:

– Hardware Efficiency

– Portability

– Security

– Management

Public domain image from http://commons.wikimedia.org/wiki/File:VMM-Type2.JPG

Buffer Overflow Attacks

What is an Exploit?

• An exploit is any input (i.e., a piece of software,

an argument string, or sequence of commands)

that takes advantage of a bug, glitch or

vulnerability in order to cause an attack

• An attack is an unintended or unanticipated

behavior that occurs on computer software,

hardware, or something electronic and that

brings an advantage to the attacker

Buffer Overflow Attack

• One of the most common OS bugs is a buffer overflow

– The developer fails to include code that checks whether an input
string fits into its buffer array

– An input to the running process exceeds the length of the buffer

– The input string overwrites a portion of the memory of the process

– Causes the application to behave improperly and unexpectedly

• Effect of a buffer overflow

– The process can operate on malicious data or execute malicious code
passed in by the attacker

– If the process is executed as root, the malicious code will be
executing with root privileges

Address Space

• Every program needs to access memory in order to run

• For simplicity sake, it would be nice to allow each
process (i.e., each executing program) to act as if it owns
all of memory

• The address space model is used to accomplish this

• Each process can allocate space anywhere it wants in
memory

• Most kernels manage each process’ allocation of
memory through the virtual memory model

• How the memory is managed is irrelevant to the process

Unix Address Space

• Text: machine code of the program,
compiled from the source code

• Data: static program variables initialized in
the source code prior to execution

• BSS (block started by symbol): static
variables that are uninitialized

• Heap : data dynamically generated during
the execution of a process

• Stack: structure that grows downwards
and keeps track of the activated method
calls, their arguments and local variables Low Addresses

0x0000 0000

High Addresses
0xFFFF FFFF

Stack

Heap

BSS

Data

Text

Vulnerabilities and Attack Method

• Vulnerability scenarios

– The program has root privileges (setuid) and is
launched from a shell

– The program is part of a web application

• Typical attack method

1. Find vulnerability

2. Reverse engineer the program

3. Build the exploit

Buffer Overflow Attack in a Nutshell

• First described in

Aleph One. Smashing The Stack For Fun And Profit. e-zine

www.Phrack.org #49, 1996

• The attacker exploits an unchecked buffer to perform a

buffer overflow attack

• The ultimate goal for the attacker is getting a shell that allows

to execute arbitrary commands with high privileges

• Kinds of buffer overflow attacks:

– Heap smashing

– Stack smashing

Buffer Overflow

domain.c
Main(int argc, char *argv[])
/* get user_input */
{

char var1[15];
char command[20];
strcpy(command, “whois ");
strcat(command, argv[1]);
strcpy(var1, argv[1]);
printf(var1);
system(command);

}

Top of

Memory

0xFFFFFFFF

Bottom of

Memory

0x00000000

.

.

.

Stack

Fill

Direction

var1 (15 char)

command
(20 char)

strcpy() Vulnerability

• argv[1] is the user input

• strcpy(dest, src) does not check buffer

• strcat(d, s) concatenates strings

domain.c
Main(int argc, char *argv[])
/*get user_input*/
{

char var1[15];
char command[20];
strcpy(command, “whois ");
strcat(command, argv[1]);
strcpy(var1, argv[1]);
printf(var1);
system(command);

}

var1 (15 char)

command

(20 char)

argv[1]

(15 char)
argv[1]

(20 char)

Top of

Memory

0xFFFFFFFF

Bottom of

Memory

0x00000000

.

.

.

Stack

Fill

Direction

Overflow

exploit

strcpy() vs. strncpy()
• Function strcpy() copies the string in the second

argument into the first argument
– e.g., strcpy(dest, src)

– If source string > destination string, the overflow characters
may occupy the memory space used by other variables

– The null character is appended at the end automatically

• Function strncpy() copies the string by specifying the
number n of characters to copy
– e.g., strncpy(dest, src, n); dest[n] = ‘\0’

– If source string is longer than the destination string, the
overflow characters are discarded automatically

– You have to place the null character manually

Return Address Smashing

• The Unix fingerd() system call, which runs as

root (it needs to access sensitive files), used

to be vulnerable to buffer overflow

• Write malicious code into buffer and

overwrite return address to point

to the malicious code

• When return address is reached, it will now

execute the malicious code with the full

rights and privileges of root

void fingerd (…) {

char buf[80];

…

get(buf);

…

}

cu
rr

en
t

fr
am

e
p

re
vi

o
u

s
fr

am
es

f() arguments

buffer

local variables

program code program code

next location

paddingat
ta

ck
er

’s
 in

p
u

t

malicious code

return address

f() arguments

return address

Shellcode Injection
• An exploit takes control of attacked computer so

injects code to “spawn a shell” or “shellcode”

• A shellcode is:

– Code assembled in the CPU’s native instruction set
(e.g. x86 , x86-64, arm, sparc, risc, etc.)

– Injected as a part of the buffer that is overflowed.

• We inject the code directly into the buffer that
we send for the attack

• A buffer containing shellcode is a “payload”

Buffer Overflow Mitigation
• We know how a buffer overflow happens, but why does it

happen?

• This problem could not occur in Java; it is a C problem

– In Java, objects are allocated dynamically on the heap (except ints, etc.)

– Also cannot do pointer arithmetic in Java

– In C, however, you can declare things directly on the stack

• One solution is to make the buffer dynamically allocated

• Another (OS) problem is that fingerd had to run as root

– Just get rid of fingerd’s need for root access (solution eventually used)

– The program needed access to a file that had sensitive information in it

– A new world-readable file was created with the information required by

fingerd

Stack-based buffer overflow
detection using a random canary

• The canary is placed in the stack prior to the
return address, so that any attempt to over-
write the return address also over-writes the
canary.

Buffer
Other local
variables

Canary
(random)

Return
address

Other data

Buffer
Corrupt
return

address
Attack code

Normal (safe) stack configuration:

Buffer overflow attack attempt:

Overflow data x

