Access Control and Information
Flow

UNINVERSITY QF

MARYLAND

Permissions

How to describe a system’s protection mechanism
— Such as who has what access rights to which objects

Access control model
— A model for security policy specification
— Basic model: Access control matrix

Security policy
— Specifying who has the access rights to what

Security mechanism
— Enforce security policies

Access Control Matrix (ACM)

S: subjects, users or processes
O: objects, resources such as files, devices, messages, etc.
A: access matrix A: S x O — R (rights)

Example:
S O file 1 file 2 file 3
process 1 RW R RWE
process 2 R RW R

ACM

ACM implementation
— Space requirements: For m objects and n subjects: m x n
— Generally the matrix Is very sparse
— Access control list (ACLs): describe the access policies for each object
— Capabilities: describe the access rights each subject has

ACM does not cover

— Time constraints
« E.g., only allowed to access at day time

Advantages of ACLs? Disadvantages of ACLs?
Advantages of Capabilities? Disadvantages of Capabilities?

ACL In Unix

* |Inareal system
— Too many subjects and objects
« Unix
— Classify subjects into: owner, group, world
— Use ACL for each object, but in terms of owner, group, world

800D Info - Permissions - License.txt
i |
Q| & | - -2 |
General | Permissions | Metadata Distribution (CDM} 53
UMNIX Permissions Ed4
Owner ™ Read W write [] Execute
Croup ™ Read [] Write [] Execute
Others ™ Read (] Write [] Execute

f?‘- Apply changes recursively

Setting Special Permissions

suid|sgid [stbl r{w | x|r|{w/|@x]|]r|w]|HX

4 | 2 |1 141211412 |114]2]1

7 7 7 7

Special user group others

Use the “chmod™ command with octal mode:

— — p— g— =

uids and effective uids

Every user has a user id that is called uid.

When user A executes program B, program B is using A’s uid
However:

Programs can change to use the effective user id euid

Effective user id euid is the uid of the program owner
e.g. the passwd program changes to use its effective uid (root) so that
it can editthe /etc/passwd file

This special permission allows a user to access files and directories that are
normally only available to the owner

SUID bit enables this functionality

Sample SETUID Scenario

/dev/1p IS owned by root with protection rw-------

— This is used to access the printer

/bin/1lp IS owned by root with rwsr-xr-x (with SETUID=1)
User A issues a print process B

Process B has the same UID as user A

Process B executes exec (“/bin/1p”, ..)

But Ip is a setuid program and now B i1s using root’s UID
Consequently, /dev/1p can be accessed to print

When /pin/1p terminates so does B

User never got the access to /dev/1p

A simple program
= Say I (cpap) own the program

FILEWRITE(file,uid,data). rwx--x--x
IF write_access(file,uid) =0
exit;
ELSE
open_for_write(file);
write_data(file,data);

* This program can only write to Bob’s file if executed by Bob.

= Can it write to cpap’s file private if executed by Bob?
= NOI!! It is going to exit after the first access control check

= What if cpap decides to make it setuid?

Problem with setUiID: Race conditions

= Now, let’s see the setuid program

FILEWRITE(file,uid,data). rws--x--X
IF write_access(file,uid) =0
exit;
ELSE
open_for_write(file);
write_data(file,data);
= This program can be executed by Bob
= And it can write to cpap’s file private due to race condition

= CAREFUL with SETUID programs!!

Attacker enters symbolic link
symlink(file,cpap/private)

Access Control Models

 Discretionary access control (DAC)

— Owner determines access rights

— Typically identity-based access control: access rights are assigned
to users based on their identity

— E.g.,ACM
« Mandatory access control (MAC)
— System enforce system-wide rules for access control
— E.g., law allows a court to access driving records without the
owners’ permission
* Role based access control
— ldentity governed by the roles a user assumes
— E.g., children under 13

DAC and MAC

When i1s DAC insufficient?

— When owner cannot be trusted for the discretion of the data and
external protection of the data is necessary

— E.g., DAC has the danger of right propagation
« Acanread X and write Y
« B canread, but no access to X
« Avreads X, write the content of X to Y, B got access to X

MAC

— Non-discretionary

— Labels are assigned to subjects and objects
— Owner has no special privileges

— E.g., Bell-Lapadula, lattices models

Traditional Models for MAC

» Bell-LaPadula (BLP)
— Address confidentiality

« Biba
— Address integrity with static/dynamic levels

Bell-LaPadula Security Model

« The Bell-LaPadula (BLP) model is about information
confidentiality

It was developed to formalize the US Department of
Defense multilevel security policy

Bell — LaPadula - Detalils

« Each user subject and information object
has a fixed security class — labels

 Use the notation < to indicate dominance
« Simple Security (ss) property:
the no read-up property

— A subject s has read access to an object o Iff the class of the
subject C(s) Is greater than or equal to the class of the object
C(o)

— 1.€. Subjects can read Objects 1ff C(0) < C(s)

Access Control: Bell-LaPadula

Subjects Objects

Access Control: Bell-LaPadula

Subjects Objects

/
~

Access Control: Bell-LaPadula

Subjects Objects

Bell - LaPadula (2)

« * property (star):
the no write-down property
— Assubject s can write to object p if C(s) < C (p)

Access Control: Bell-LaPadula

Subjects Objects

Access Control: Bell-LaPadula

Subjects Objects

7
S

Access Control: Bell-LaPadula

Subjects Objects

Security Models - Biba

« Based on the Cold War experiences, information integrity Is
also important, and the Biba model, complementary to Bell-
LaPadula, is based on the flow of information where preserving

Integrity is critical.
» The “dual” of Bell-LaPadula

Integrity Control: Biba

» Designed to preserve integrity, not limit access

« Three fundamental concepts:
— Simple Integrity Property — no read down
— Star Integrity Property (*) — no write up
— No execute up

Integrity Control: Biba

Integrity Control: Biba

Combining integrity and privacy into a lattice

* Integrity
— High Integrity (H)
— Medium Integrity (M)
— Low integrity (L)
— No integrity (N)
« Confidentiality
— {A,B} can be read by both Aand B
— {A} can be read only by A
— {B} can be read only by B

Security Lattice

« S is the set of all security levels
— Suppose the integrity categories are H (high
Integrity), M (medium integrity), L (low integrity)
— Suppose the confidentiality categories are
{A},{B},{A,B} and {}.
— Then States = [(H, {}), (H,{A}), (H,{B}), (H,{A,B}),
(M, {}), MAA}), (M,{B}), (M{A,B}), (L, {})].

Information Flow in a security lattice

H,{A,B}

TN

M.{A,B}

NI\

M.{A} M.{B}

N
|

L{}

H.{A}

Information Flow — Informal

« What do we mean by information flow?

-y = x/z;

« A command sequence c causes a flow of information
from x to y If the value of y after the commands allows
one to deduce information about the value of x

- tmp = X;
-y = tmp;
— Transitive

Information Flow Models

« Two categories of information flows

— explicit — operations causing flow are independent of value of x,
e.g. assignment operation, x=y

— Implicit - conditional assignment
e (if x = 5 then y=1 else y=0)
« Components
— Lattice of security levels (L, <)
— Set of labeled objects
— Security policy

