ENEE 457: Computer Systems Security
10/26/16

Lecture 15
Access Control and Information Flow

Charalampos (Babis) Papamanthou

Department of Electrical and Computer Engineering
University of Maryland, College Park

What is access control?

* After we authenticate 1nto a system using, for example, a password, the system
decides what resource we can access

* The mechanism and rules for the system to do that are encoded 1n access control
information

* Example

* After I log into my Google drive, I can only access files that other people have shared with
me (access control rules)

* Note that the action of logging in 1s not governed by access control, but by password
authentication

Basic Access Control and Information Flow
Models

* Discretionary access control (DAC)
* Owner determines access rights

* Typically it 1s an 1dentity-based access control: access rights are assigned to users based on
their identity

* E.g., Google drive, File system in Windows/Linux

 Mandatory access control (MAC)
* System enforce system-wide rules for access control
* E.g., law allows a court to access driving records without the owners’ permission

Access Control Matrix (ACM)

* S: subjects, users or processes

* O: objects, resources such as files, devices, messages, etc.
* A: access matrix A: S x O — R (rights)

* Example:

S O file 1 file 2 file 3

process 1 RW R RWE

process 2 R RW R

ACM

* DAC implementation
e Access Control Matrix (ACM): Inefficient

* Access control list (ACLs): describe the access policies for each
object

* Capabilities: describe the access rights each subject has

* Advantages and Disadvantages of ACLs
* Easy to find which people can access an object
* Not that easy to find which objects can be accessed by a specific

person
* Advantages and Disadvantages of Capabilities

* Easy to find which objects can be accessed by a specific person
* Not that easy to find which persons can access a specific object

ACL in Unix

* In a real system
* Too many subjects to deal with (think about users in a linux
system)

* Unix
* Classify subjects into: owner, group, world
* Use ACL for each object, but in terms of owner, group, world

* Not the same system in Google drive

L HONS) Info - Permissions - License.txt

Q| &

Ceneral Permissions

|
i
S L —

Metadata Distribution (CDN} S3

UNIX Permissions 644

Owner ™ Read ™ Wwrite (] Execute
Group ™ Read (] Write [] Execute
Others ™ Read () Write (] Execute

) i ;
(2 Apply changes recursively

Setting Special Permissions

sud|{sgd |stb]l rjw|x|riw|x]|r|w]|X

4 | 2 |1 |af2jt]al2]|1]a]2]1

7 7 7 7

Special user group others

Use the “‘chmod™ command with octal mode:
chmod 7777 filename

Special Bits

* suid: If suid 1s set, then the program can run with 1d of the
user that owns the program (and 1s not bound to run with
the 1d of the user that executes the program)

* sgid: If sgid 1s set, then the program can run with group id
of the owner’s group (and 1s not bound to run with the
group 1d of the user that executes the program)

* sticky bit: If 1t 1s set, then no one with write and execute
access can rename or delete a file or directory

Why do we need setUiD?

* Every user has a user 1d that is called uid.

* When user A executes program B, program B 1s using A’s
uid
* However:

* Programs can change to use the effective user 1d euid

* Effective user 1d euid 1s the uid of the program owner

* ¢.g.the passwd program changes to use its effective uid
(root) so that it can edit the /etc/passwd file

* This special permission allows a user to access files and
directories that are normally only available to the owner

* SUID bit enables this functionality

Sample SETUID Scenario

. /dev/1p 18 owned by root with protection rw-------
* This 1s used to access the printer

- /bin/1p 18 owned by root with rwsr-xr-x (with

SETU

=1)

* User A 1ssues a print process p

Process p has the same UID as user A

Process p executes exec (“/bin/1p”, ..)

But Ip 1s a setuid program and now p can use root’s U

Consequently, /dev/1p can be accessed to print

* When /bin/1p terminates so does p

* User A never got the access to /dev/1p, just the process he

executed

A simple program

= Say I (cpap) own the program

FILEWRITE((file uid.data): rwx--x--x

IF write_access(file,uid) =0 //write_access checks real user_id

exit;

ELSE
open_for_write(file); //open_for_write checks for effective user_id
write_data(file,data);

* This program can only write to Bob’s file if executed by
Bob.

= Can 1t write to cpap’s file private if executed by Bob?

= NO!! It is going to exit after the first access control check

* What if cpap decides to make it setuid?

Problem with setUiD: Race
conditions

= Now, let’s see the setuid program

FILEWRITKE(file uid .data): rws--x--x
IF write_access(file,uid) =0

exit; Attacker enters symbolic link
ELSE symlink(file,cpap/private)

open_for_write(file);

write_data(file,data);
* This program can be executed by Bob

" And it can write to cpap’s file private due to race
condition

* CAREFUL with SETUID programs!!

DAC and MAC

* When 1s DAC 1nsufficient?

* When owner cannot be trusted for the discretion of the data and external protection of the
data is necessary

* E.g., DAC has the danger of right propagation
* Acanread X and write Y
* B canread Y, but no access to X
* Areads X, write the content of X to Y, B got access to X

* MAC

* Non-discretionary

* Labels are assigned to subjects and objects

* Owner has no special privileges

* E.g., Bell-Lapadula, lattices models, SELinux by NSA

* In our example: Give a label to X {A}, alabel to Y {A,B} and see that the next flow will not
be allowed

Traditional Models for MAC

* Bell-LaPadula (BLP)

* About confidentiality (it was developed to formalize the
US Department of Defense multilevel security policy)

e Biba

* About integrity with static/dynamic levels

Bell — LaPadula - Details

* Each user subject and information object
has a fixed security class — labels

* Use the notation < to indicate dominance
* Simple Security (ss) property:
the no read-up property

* A subject s has read access to an object o iff the class of the
subject C(s) 1s greater than or equal to the class of the object

C(o)
* 1.e. Subjects s can read Objects o iff C(0) < C(s)

Access Control: Bell-LaPadula

Subjects Objects

Access Control: Bell-LaPadula

Subjects Objects

Access Control: Bell-LaPadula

Subjects Objects
| e | | e |
s /_
| Uncssted | (REEOKT | unciasited

Bell - LaPadula (2)

* * property (star):
the no write-down property
* A subject s can write to object p 1f C(s) = C (p)

Access Control: Bell-LaPadula

Subjects Objects

Access Control: Bell-LaPadula

Subjects Objects

/
<

Access Control: Bell-LaPadula

Subjects Objects

Security Models - Biba

* Based on the Cold War experiences, information
integrity 1s also important, and the Biba model,
complementary to Bell-LaPadula, is based on the flow
of information where preserving integrity is critical.

 The “dual” of Bell-LLaPadula

Integrity Control: Biba

* Designed to preserve integrity, not limit access

* Three fundamental concepts:
e Simple Integrity Property — no read down
e Star Integrity Property (*) — no write up
* No execute up

Integrity Control: Biba

| gy (RmOK) vy |

__

Integrity Control: Biba

Combining integrity and privacy
into a lattice

* Integrity
* High Integrity (H)
* Medium Integrity (M)
* Low integrity (L)
* No integrity (N)

* Confidentiality
* {A,B} can be read by both A and B
* {A} can be read only by A
* {B} can be read only by B

Security Lattice

« Sis the set of all security levels

— Suppose the integrity categories are H (high
integrity), M (medium integrity), L (low integrity)

— Suppose the confidentiality categories are
{A},{B},{A,B} and {}.

— Then States = [(H, {}), (H,{A}), (H,{B}), (H,{A,B}),

(M, (1), (M,{A}), (M,{B}), (MAA,B}), (L, 13), (L.{A}),
(L.{B}), (L{AB}), |.

Information Flow in a security lattice

H,{A,B}

TN

M,{A,B}

NIN

M.{A} M.{B}

N
l

L.{}

H.{A}

Information Flow in Programming

* Make sure secret inputs do not flow to public outputs
* This 1s called the property of non-interference (NI)

Do these programs satisfy NI?

* p_out=p_in + s_in (no)
*s_out=p_in (yes)

* p_out =s_in;
p_out = 1; (yes)

* if (s_in mod 2) =0 then p_out = 0; else p_out = 1; (no)
* while (s_in !=0) do { //nothing } (yes)

