
ENEE 457: Computer Systems Security

Lecture 16
Buffer Overflow Attacks

Charalampos (Babis) Papamanthou

Department of Electrical and Computer Engineering

University of Maryland, College Park



Buffer overflow attacks

• We have already seen some kind of a buffer overflow…

• Heartbleed

• Buffer overflow attacks lead to undesired behavior (e.g., in Heartbleed they led to 
the secret key being output to the attacker) when the attacker causes the system to 
read data outside an “eligible” memory area



Memory Layout

• Stack and heap and the dynamically allocated portions of memory whose size 
changes while program runs

• Stack is used for keeping track of functions calls, heap is used for allocating 
dynamic memory (note that these cannot be predermined at compilation time)



Stack Layout

• We store arguments at the top of the stack frame and other 
variables at the bottom of the stack frame



Addresses of variables during runtime

• The CPU needs to access addresses of local variables in the function at runtime

• Unfortunately, these addresses are not known at compilation time (at compilation 
time, I only know the addresses relative to the top of the stack frame)

• To deal with that, there is a system register ebp which stores the address of the 
current stack frame (basically the top of the stack)

• So whenever CPU needs to access a specific local variable within a stack frame, it 
just uses ebp and the relative offset



Example 



Let’s see the assembly code of main.c



Assembly



Return address and previous frame pointer

• Between the arguments and the local variables, the stack frame will store the 
return address, namely, where the execution needs to return after the function call 
is done and releases the memory

• Also, it will store the previous frame pointer, so that the ebp can be updated 
whenever the execution is done



Example



Drawing the stack layout for a recursive program



Basics of Buffer Overflow attack: Example



Challenges of the attack



How to find the return address?

• The attacker can use FP to figure out what address he should be using to overwrite 
the return address and place the malicious code

• But FP is not printed by the program. This is not likely

• Possible solutions:

• Try many choices (low probability of success)

• Try to run a similar/same program to see how the addresses are distributed. In particular if 
you do not randomize the addresses of the variables on the stack, the addresses you will be 
getting on your own execution will be similar to the addresses of the program you are trying 
to attack, since the stack is always starting from a fixed location

• Note also that stack does not grow that much (unless you are doing a lot of 
recursion) so you can hit the right address with very high probability



Find the return address: Using NOOP



What program to run?

char shellcode[] = 

"\xeb\x18\x5e\x31\xc0\x8

8\x46\x07\x89\x76\x08\x

89\x46" 

"\x0c\xb0\x0b\x8d\x1e\x8

d\x4e\x08\x8d\x56\x0c\x

cd\x80" 

"\xe8\xe3\xff\xff\xff\x2f\x6

2\x69\x6e\x2f\x73\x68";



Challenge #1

• How to estimate the distance from the beginning of the buffer to the address where 
the return address is stored?

• Just debug and print the address x of the beginning of the buffer and the address of %ebp

• Remember %ebp will point to one position behind the return address

• So the distance is %ebp – x+4



Challenge #2

• What address to overwrite the return address with 

• Any value greater than %ebp + 8 will do

• This is because you can place the malicious code at any point in memory after the return 
address and the return address is finishing 8 bytes after %ebp


