
ENEE 457: Computer Systems Security

Lecture 13
Password Authentication and Rainbow Tables

Charalampos (Babis) Papamanthou

Department of Electrical and Computer Engineering

University of Maryland, College Park

Passwords and Authentication

• Passwords are not stored in the clear but as

• username, HASH(password) (HASH is one-way)

• How can you invert a HASH(password) where the
password has n bits (N=2^n)?

• What if you chose from a dictionary?

TIME SPACE

O(1) O(N)

O(N) O(1)

TIME SPACE

O(1) O(|dictionary|)

O(|dictionary|) O(1)

Can we do better?

• Rainbow tables

• Try it at http://project-rainbowcrack.com/

TIME SPACE

O(N^{2/3}) O(N^{2/3})

http://project-rainbowcrack.com/

Basic Idea

• Assume h is a one-way hash function mapping n bits to n bits (password to hashes or hashes to
passwords), where N = 2^n

• Assume h cycles through all the values of the domain: Namely if you begin with a password p,
then applying h(.) N times will cycle through all the possible values of {0,1}^n. How you can use
this fact to crack a password using sqrt(N) space in sqrt(N) time?

• Answer:

• Start with an arbitrary password p, compute h_1,h_2,...h_N and store

• h_1 h_{sqrt(N)}

• h_{sqrt(N)+1} h_{2sqrt(N)}

• …

• h_{(sqrt(N)-1)sqrt(N)} h_{N}

• Store these in a hash table

• Now given a hash to break h_i, start computing h(…h(h(h_i))…) and you are guaranteed to hit an
endpoint of the above. Get the starting point and start developing the chain until you hit the
password.

• Clearly this requires sqrt(N) time and sqrt(N) space

Rainbow tables
• Having a hash function that cycles is a big assumption. Hash

functions typically have collisions.

• For that we need rainbow tables

• Pick m passwords p1 p2 … pm and start developing chains, each
one having t elements. Store the start points and the endpoints.
Then given a hash h, start developing chains until you hit an
endpoint and then go the start point to retrieve the password

Hash function is not enough…

• Let D be the domain of the passwords and H be the domain of the hash fuction

• h: D → H

• r: H → D

• Before:

• p → h(p)→h(h(p))→…→h(h(…h(p)…))

• Now

• p → h(p)→ r(h(p)) → h(r(h(p))) → r(h(r(h(p))))…

• Example reduction function: If your password is 16 bits and the hash is 256 bits, keep 16
equally distributed bits from the 256 bits

Problem 1

• You might not hit an endpoint after t evaluations. This can be the case if the hash
you started with is not in the collection of the values that were generated

Problem 2

• Even if you do, it might be the case that there is a collision. Namely hashing many
times H(sp_i) will never give you the hash you started with, so you cannot
retrieve the password

Any theoretical guarantees?

• Hellman (Turing award winner, 2016) proved that if mt^2 = N, then the
probability of retrieving the password using the above approach is

• mt/(2N)=1/(4t)

• Typical setting of the parameters: m=N^{1/3}, t=N^{1/3} (non-constant
probability)

• Can we increase this probability?

• Generate 4t independent tables

• Then the probability that the given password is covered is

• 1 – (1-1/4t)^{4t} ~ = 1-e^{-1}=0.63

How to generate independent tables?

• For each one of 4t tables, pick a random reduction function r_i

• Before:

• p → h(p)→r(h(p))→…→h(r(…h(p)…))

• Now (for table i)

• p → h(p)→r_i(h(p))→…→h(r_i(…h(p)…))

Complexities?

• Space: O(mt)=O(N^{2/3})

• Time: Search every table separately, so O(t*t)=O(N^{2/3})

• How can we keep the same probability, while reducing the time to search?

• Use mt chains of t size each but use a different reduction function per step

• So in the worst case you do space t+(t-1)+(t-2)+…1 = t(t-1)/2

Countermeasures

• Use salting

• Store h(r||p), r, instead of just h(p)

• Then the password space becomes too big to be stored.

Question

• What if you store passwords as h(p||r), where r is randomness of 128 bits?

• Will the O(N) space solution work?

• No, because the data structure is built on the password space, and not on the
randomness+password space (that would require too much space!)

