ENEE 459-CComputer Security

Authentication and passwords

Select a Password

- Choose a case-sensitive alphanumeric password
- That is, your password should use the following characters
 - -0123456789
 - abcdefghijklmnopqrstuvwxyz
 - ABCDEFGHIJKLMNOPQRSTUVWXYZ
- Let's try to crack it!
- http://ophcrack.sourceforge.net/

Why do we need Passwords?

- We need a password to authenticate our identity (who we are) to a system
- Authentication is the act of confirming the truth of an attribute of a datum or entity
- There are three authentication factors:
 - Knowledge: Something the user knows (e.g., a password, or PIN, challenge/response (the user must answer a question), pattern)
 - Ownership: Something the user has (e.g., phone number, ID card, security token, etc.)
 - Inherence: Something the user is or does (e.g., fingerprint, retinal pattern, DNA sequence, voice, etc.).

Storing Passwords

User Password file GOD plague:a4566178ab4f56a3f90968e210b95bca zero cool:2d0f1a836407eb204c0a9186687b713e cryptographic hash function

Password Verification

User inserts username and password

System hashes the password entered by the user and compares it with the stored hash

Where is the Password File?

- Windows (32 bit):
 C:\WINDOWS\system32\config\SAM
- Linux: /etc/passwd
- Mac OS X: /var/db/shadow/hash/

Strong Passwords

- Long passwords preferred
- Use all available characters
 - UPPER/lower case characters
 - Digits
 - Special characters: &, %, \$, £, ", |, ^, §, ...
- Which of the following passwords are strong?
 - cpap1
 - john
 - P@\$\$w0rd
 - TD2k5s@}ecV87^R:@DKlksj298RLO<j;-*h</p>

Password Complexity

- Consider a password with six characters
- Digits (10) $10^6 = 1,000,000$
- Lower case characters (26) $26^6 = 308,915,776$
- UPPER and lower case characters (52) $52^6 = 19,770,609,664$
- Special characters: &, %, \$, @, ", |, , <, ... (32) $32^{6} = 1,073,741,824$
- Standard keyboard characters (94) $94^6 = 689,869,781,056$
- All 7-bit ASCII characters
 128⁶ = 4,398,046,511,104

Password Length

Assume a standard keyboard with 94 characters

Passwor d length	Number of passwords
u lengui	passwords
5	$94^5 = 7,339,040,224$
6	$94^6 = 689,869,781,056$
7	$94^7 = 64,847,759,419,264$
8	$94^8 = 6,095,689,385,410,816$
9	949 = 572,994,802,228,616,704

Password Salt

Without salt

- 1. User types userid, U, and password, P
- 2. System looks up H, the stored hash of U's password
- 3. System tests whether h(P) = H

With salt

- 1. User types userid, U, and password, P
- 2. System looks up S and H, where S is the random salt for userid U and H is the stored hash of S and U's password
- 3. System tests whether h(S, P) = H

Random Salting

- Alice and Bob selected same password
 - If not random salted hashes will be the same
 - probably they come from a common word
- Too easy for an hacker to start an attack from equal hash

Alice:root:a483b303c23af34761de02be038fde08

Bobby:root:3282abd0308323ef0349dc7232c349ac

Cecil:root:a483b303c23af34761de02be038fde08

Alice:root:b4ef21:3ba4303ce24a83fe0317608de02bf38d

Bobby:root:a9c4fa:3282abd0308323ef0349dc7232c349ac

Cecil:root:209be1:a56456546ffggfkhjrejklhrehytey8

- Command in Linux to build a password hash:
 - \$ mkpasswd --method=SHA-256 -S 12345678

Same
Password
Same
Hash

No Salted

Same Password Different

Hash Salted

Simple Cracking Methods

Brute force

- Try all passwords in a given space
- Online vs. offline attack
- Eventually succeeds given enough time and CPU power

Dictionary

- Precompute hashes of all passwords in a given space
- Create search structure indexed by hash value
- Search for password in the "dictionary"
- Vast, and possibly unfeasible, space usage and preprocessing time

Brute Force Cracking

- The attacker has 60 days
- How many hash computations per second?
 - -5 characters: 1,415
 - -6 characters: 133,076
 - -7 characters: 12,509,214
 - -8 characters: 1,175,866,008
 - -9 characters: 110,531,404,750