ENEE 457: Computer Systems Security 10/12/16

Lecture 12 Security Protocols I: TLS and Zero-Knowledge Proofs

Charalampos (Babis) Papamanthou

Department of Electrical and Computer Engineering University of Maryland, College Park

TLS protocol

- TLS provides transport layer security for Internet applications
- It provides for confidentiality and data integrity over a connection between two end points

- Advantage of TLS
 - applications can use it transparently to securely communicate with each other
 - TLS is visible to applications, making them aware of the cipher suites and authentication certificates negotiated during the set-up phases of a TLS session

14.2 TLS Record Protocol

- TLS Record Protocol layers on top of a reliable connection-oriented transport, such as TCP
- TLS Record Protocol
 - provides data confidentiality using symmetric key cryptography
 - provides data integrity using a keyed message authentication checksum (MAC)
- The keys are generated uniquely for each <u>session</u> based on the security parameters agreed during the TLS handshake

- Basic operation of the TLS Record Protocol
 - 1. read messages for transmit
 - 2. fragment messages into manageable chunks of data
 - 3. compress the data, if compression is required and enabled
 - 4. encrypt the data
 - 5. calculate a MAC
 - 6. transmit the resulting data to the peer

- At the opposite end of the TLS connection, the basic operation of the sender is replicated, but in the reverse order
 - 1. read received data from the peer
 - 2. verify the MAC
 - 3. decrypt the data
 - 4. decompress the data, if compression is required and enabled
 - 5. reassemble the message fragments
 - 6. deliver the message to upper protocol layers

14.3 TLS Handshake Protocol

- TLS Handshake Protocol is layered on top of the TLS Record Protocol
- TLS Handshake Protocol is used to
 - authenticate the client and the server
 - exchange cryptographic keys
 - negotiate the used encryption and data integrity algorithms before the applications start to communicate with each other

Figure 14.1 The TLS handshake.

- TLS protocol provides transport layer security for Internet applications and confidentiality using symmetric key cryptography and data integrity using a keyed MAC
- It also includes functionality for client and server authentication using public key cryptography

Zero-Knowledge Proofs

- An interactive proof system involves a prover and a verifier
- The prover proves he knows something to the verifier without revealing it
- Application: Log into a server without revealing your password

Properties of ZKPK

- Completeness
 - If both prover and verifier are honest, protocol succeeds with overwhelming probability
- Soundness
 - No one who does <u>not</u> know the secret can convince the verifier (except with very small probability)
 - Intuition: the protocol should not enable prover to prove a false statement
- Zero knowledge
 - The proof does not leak any information

An example (wikipedia)

An example (wikipedia)

Schnorr's Id Protocol

- System parameters
 - Prime p
 - g is a generator of Z_p^*

Cheating Prover

- Prover can cheat if he can guess c in advance
 - Guess c, set $x=g^{y}t^{-c}$ for random y in 1st message
 - What is the probability of guessing c?

P proves that he "knows" discrete log of t even though he does not know s