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Signature schemes

digital signature schemes≈

MACs	in	the	public-key	setting



Alice Bob

(m,	t=Tagk(m))

k k

m	є {0,1}*

k	is chosen randomly
from some	set	K

Vrfyk(m) є {yes,no}

Message Authentication Codes – the idea



Signature Schemes

Alice Bob
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Alice Bob

(m,	t=Tagk(m))

sk pk

m	є {0,1}*

(pk,sk)	:=	Gen(1n)

Vrfyk(m) є {yes,no}



Advantages of the signature schemes
Digital signatures are:

1. publicly verifiable
2. transferable
3. provide non-repudiation



Anyone	can	verify	the	signatures
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Look at the MACs...

Alice Bob

(m,	t=Tagk(m))

k k

m	є {0,1}*

Carol

Look,	I	got	(m,t) from	AliceWhy	shall	I	trust	you?

1. You	could	have	created	t yourself	
(because	you	know	k)

2. I	don’t	know	k,	so	how	can	I	verify	
the	tag?



Signatures are publicly-verifiable!

Alice Bob

(m,	σ =Signsk(m))

skA pkA

m	є {0,1}*

Carol

I	can	calculate

Vrfy(pkA,m,σ)

and	check.

Look,	I	got	(m,σ) from	Alice



So, the signatures are transferable
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“Alice	
signed	m”
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“Alice	
signed	m”

“Alice	
signed	m”

I	believe	it! I	believe	it! I	believe	it!



Non-repudiation

Alice Bob

(m,	σ =Signsk(m))

skA pkA

m	є {0,1}*

Judge

“I’ve	got	(m,σ) from	Alice”

It’s	not	true!
I	never	signed	m!

Vrfy(pk,m,σ)	=	yes
so	you	cannot	repudiate signing	m...



Digital Signature Schemes
A	 digital	signature	scheme	is	a	tuple (Gen,Sign,Vrfy) of	poly-time	
algorithms,	such	that:

• the key-generation	algorithm	Gen takes	as	input	a	security	
parameter	1n and	outputs	a	pair (pk,sk),

• the signing algorithm	Sign takes	as	input	a	key	sk and	a	message	
mє{0,1}* and	outputs	a	signature σ,

• the	verification algorithm	Vrfy takes	as	input	a	key	pk,	a	message	
m and	a	signature σ,	and	outputs	a	bit	b	є {yes,	no}.

If	Vrfypk(m,σ)	=	yes then	we	say	that	σ is	a	valid	signature on	the	
message	m.



Correctness

We require that it always holds that:

Vrfypk(m,Signsk(m)) = yes

What remains is to define security of a MAC.



How to define security?
As in the case of MACs, we need to specify:

1. how the messages m1,...,mt are chosen,

2. what is the goal of the adversary.

Good tradition: be as pessimistic as possible!

Therefore we assume that

1. The adversary is allowed to chose m1,...,mt.

2. The goal of the adversary is to produce a valid signature on some 
m’ such that m’ ≠ m1,...,mt.



security	parameter
1n

selects	(pk,sk) =	Gen(1n)

oracle

m1

mt

.	.	.

We	say	that	the	adversary	breaks	the	signature	scheme	if	at	the	end	
she	outputs	(m’,	σ’) such	that

1. Vrfy(m’,	σ’)	=	yes
2. m’	≠ m1,...,mt

adversary

pk

Signsk(m1)

Signsk(mt)



The security definition

We say that (Gen,Sign,Vrfy) is existentially 
unforgeable under an adaptive chosen-message 
attack if

A

polynomial-time
adversary	A

P(A	breaks	it) is	negligible	(in n)

sometimes	we	just	say: unforgeable (if the	context is clear)



The “handbook RSA signatures”
N	=	pq - RSA modulus

e is	such	that gcd(e, φ(N)) =	1,
d is	such	that ed =	1	(mod	φ(N))

Sign(d,N) (c) = cd mod N 
and

Vrfy(e,N)	(m, σ) = yes iff σe = m mod N

Correctness:

σe	=	(md)e
=	mde

=	m1

=	m



Problems with the “handbook RSA” [1/2]

The adversary can forge a signature on a “random” message 
m.

Given the public key (N,e):

he just selects a random σ and computes 
m = σe mod N.

Trivially, σ is a valid signature on m.

A	“no-message	attack”:



Problems with the “handbook RSA” (2/2)
How to forge a signature on an arbitrary message m? 
Use the homomorphic properties of RSA.

oracle

m1adversary

Signsk(m1)	=	m1
d mod	N

Signsk(m2)	=	m2
d mod	N

(N,e)

chooses:
1. random	m1
2. m2 :=	m	/	m1 mod	N m2

computes	(mod	N):

m1
d ·	m2

d

=		(m1 ·	m2)d
=		md

this	is	a	valid	signature	on	m



Is it a problem?

In many applications – probably not.

But we would like to have schemes that are not 
application-dependent...



Solution
Before computing the RSA function – apply some function H.

N	=	pq, such	that	p and	q are	large	random	primes
e is	such	that gcd(e,	φ(N))	=	1
d	is	such	that ed =	1	(mod	φ(N))

Signd:	ZN* →	ZN* is	defined	as:
Sign(m)	=	md mod	N.

Vrfyeis defined	as:
Vrfye(m,σ)	=	yes iff σe =m	(mod	N)

Signd:	ZN* →	ZN* is	defined	as:
Sign(m)	=	H(m)d mod	N.

Vrfyeis defined	as:
Vrfye(m,σ)	=	yes iff σe =	H(m) (mod	N)



How to choose such H?
A minimal requirement:

it should be collision-resistant.

(because if the adversary can find two messages m,m’ such that
H(m) = H(m’)

then he can forge a signature on m’ by asking the oracle for a signature on m)



Hash-and-Sign [1/5]

Hash and sign is a generic construction that takes as input:
• a signature scheme that works on “short messages”, and
• a hash function,
and transforms it into a 
• a signature scheme that works on “long messages”.



Hash-and-Sign [2/5]
1. (Gen,Sign,Vrfy) – a signature scheme “for short messages”

short	x

signature	σ

Signsk

σ

yes	/	no

Vrfypk

x

m

2. a	hash	function	H

H

H(m)



Hash-and-Sign [3/5]

signature	Signsk (H(m))

Signsk

m

H

H(m)

How	to	sign a	message	m?



Hash-and-Sign [4/5]
How	to	verify?

σ

yes	/	no

Vrfypk

m

H

H(m)
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