
ENEE 457: Computer Systems Security
10/5/16

Lecture 10
Digital Signatures

Charalampos (Babis) Papamanthou

Department of Electrical and Computer Engineering
University of Maryland, College Park



•Slides adjusted from:
•http://dziembowski.net/Teaching/BISS09/

©2009	by	Stefan	Dziembowski.	Permission	to	make	digital	or	hard	copies	of	part	or	all	of	
this	material	is	currently	granted	without	fee	provided	that	copies	are	made	only	for	
personal	or	classroom	use,	are	not	distributed	for	profit	or	commercial	advantage,	and	
that	new	copies	bear	this	notice	and	the	full	citation.



Signature schemes

digital signature schemes≈

MACs	in	the	public-key	setting



Alice Bob

(m,	t=Tagk(m))

k k

m	є {0,1}*

k	is chosen randomly
from some	set	K

Vrfyk(m) є {yes,no}

Message Authentication Codes – the idea



Signature Schemes

Alice Bob

k k

1n

Alice Bob

(m,	t=Tagk(m))

sk pk

m	є {0,1}*

(pk,sk)	:=	Gen(1n)

Vrfyk(m) є {yes,no}



Advantages of the signature schemes
Digital signatures are:

1. publicly verifiable
2. transferable
3. provide non-repudiation



Anyone	can	verify	the	signatures

P5

P1

P2

P4

pk1
pk2
pk3
pk4
pk5

public	register:
Sign(sk3,m)

2.	reads	pk3

sk3

3.	computes	Vrfy(pk3,m)

P3



Look at the MACs...

Alice Bob

(m,	t=Tagk(m))

k k

m	є {0,1}*

Carol

Look,	I	got	(m,t) from	AliceWhy	shall	I	trust	you?

1. You	could	have	created	t yourself	
(because	you	know	k)

2. I	don’t	know	k,	so	how	can	I	verify	
the	tag?



Signatures are publicly-verifiable!

Alice Bob

(m,	σ =Signsk(m))

skA pkA

m	є {0,1}*

Carol

I	can	calculate

Vrfy(pkA,m,σ)

and	check.

Look,	I	got	(m,σ) from	Alice



So, the signatures are transferable

P2 P3

Alice

P4P1

σ
=	
Si
gn
(s
k 3
,m

)

skA

(m,σ) (m,σ) (m,σ)

“Alice	
signed	m”

pkA pkA pkA pkA

“Alice	
signed	m”

“Alice	
signed	m”

I	believe	it! I	believe	it! I	believe	it!



Non-repudiation

Alice Bob

(m,	σ =Signsk(m))

skA pkA

m	є {0,1}*

Judge

“I’ve	got	(m,σ) from	Alice”

It’s	not	true!
I	never	signed	m!

Vrfy(pk,m,σ)	=	yes
so	you	cannot	repudiate signing	m...



Digital Signature Schemes
A	 digital	signature	scheme	is	a	tuple (Gen,Sign,Vrfy) of	poly-time	
algorithms,	such	that:

• the key-generation	algorithm	Gen takes	as	input	a	security	
parameter	1n and	outputs	a	pair (pk,sk),

• the signing algorithm	Sign takes	as	input	a	key	sk and	a	message	
mє{0,1}* and	outputs	a	signature σ,

• the	verification algorithm	Vrfy takes	as	input	a	key	pk,	a	message	
m and	a	signature σ,	and	outputs	a	bit	b	є {yes,	no}.

If	Vrfypk(m,σ)	=	yes then	we	say	that	σ is	a	valid	signature on	the	
message	m.



Correctness

We require that it always holds that:

Vrfypk(m,Signsk(m)) = yes

What remains is to define security of a MAC.



How to define security?
As in the case of MACs, we need to specify:

1. how the messages m1,...,mt are chosen,

2. what is the goal of the adversary.

Good tradition: be as pessimistic as possible!

Therefore we assume that

1. The adversary is allowed to chose m1,...,mt.

2. The goal of the adversary is to produce a valid signature on some 
m’ such that m’ ≠ m1,...,mt.



security	parameter
1n

selects	(pk,sk) =	Gen(1n)

oracle

m1

mt

.	.	.

We	say	that	the	adversary	breaks	the	signature	scheme	if	at	the	end	
she	outputs	(m’,	σ’) such	that

1. Vrfy(m’,	σ’)	=	yes
2. m’	≠ m1,...,mt

adversary

pk

Signsk(m1)

Signsk(mt)



The security definition

We say that (Gen,Sign,Vrfy) is existentially 
unforgeable under an adaptive chosen-message 
attack if

A

polynomial-time
adversary	A

P(A	breaks	it) is	negligible	(in n)

sometimes	we	just	say: unforgeable (if the	context is clear)



The “handbook RSA signatures”
N	=	pq - RSA modulus

e is	such	that gcd(e, φ(N)) =	1,
d is	such	that ed =	1	(mod	φ(N))

Sign(d,N) (c) = cd mod N 
and

Vrfy(e,N)	(m, σ) = yes iff σe = m mod N

Correctness:

σe	=	(md)e
=	mde

=	m1

=	m



Problems with the “handbook RSA” [1/2]

The adversary can forge a signature on a “random” message 
m.

Given the public key (N,e):

he just selects a random σ and computes 
m = σe mod N.

Trivially, σ is a valid signature on m.

A	“no-message	attack”:



Problems with the “handbook RSA” (2/2)
How to forge a signature on an arbitrary message m? 
Use the homomorphic properties of RSA.

oracle

m1adversary

Signsk(m1)	=	m1
d mod	N

Signsk(m2)	=	m2
d mod	N

(N,e)

chooses:
1. random	m1
2. m2 :=	m	/	m1 mod	N m2

computes	(mod	N):

m1
d ·	m2

d

=		(m1 ·	m2)d
=		md

this	is	a	valid	signature	on	m



Is it a problem?

In many applications – probably not.

But we would like to have schemes that are not 
application-dependent...



Solution
Before computing the RSA function – apply some function H.

N	=	pq, such	that	p and	q are	large	random	primes
e is	such	that gcd(e,	φ(N))	=	1
d	is	such	that ed =	1	(mod	φ(N))

Signd:	ZN* →	ZN* is	defined	as:
Sign(m)	=	md mod	N.

Vrfyeis defined	as:
Vrfye(m,σ)	=	yes iff σe =m	(mod	N)

Signd:	ZN* →	ZN* is	defined	as:
Sign(m)	=	H(m)d mod	N.

Vrfyeis defined	as:
Vrfye(m,σ)	=	yes iff σe =	H(m) (mod	N)



How to choose such H?
A minimal requirement:

it should be collision-resistant.

(because if the adversary can find two messages m,m’ such that
H(m) = H(m’)

then he can forge a signature on m’ by asking the oracle for a signature on m)



Hash-and-Sign [1/5]

Hash and sign is a generic construction that takes as input:
• a signature scheme that works on “short messages”, and
• a hash function,
and transforms it into a 
• a signature scheme that works on “long messages”.



Hash-and-Sign [2/5]
1. (Gen,Sign,Vrfy) – a signature scheme “for short messages”

short	x

signature	σ

Signsk

σ

yes	/	no

Vrfypk

x

m

2. a	hash	function	H

H

H(m)



Hash-and-Sign [3/5]

signature	Signsk (H(m))

Signsk

m

H

H(m)

How	to	sign a	message	m?



Hash-and-Sign [4/5]
How	to	verify?

σ

yes	/	no

Vrfypk

m

H

H(m)



©2009	by	Stefan	Dziembowski.	Permission	to	make	digital	or	hard	copies	of	part	or	all	of	
this	material	is	currently	granted	without	fee	provided	that	copies	are	made	only	for	
personal	or	classroom	use,	are	not	distributed	for	profit	or	commercial	advantage,	and	
that	new	copies	bear	this	notice	and	the	full	citation.


