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The “handbook RSA encryption”
N	=	pq - RSA modulus

e is	such	that gcd(e, φ(N)) =	1,
d	is	such	that ed =	1	(mod	φ(N))

Enc(e,N)	(m)	=	me mod	N, 

and Dec(d,N)	(c)	=	cd mod	N.



Problems

RSA has some “algebraic properties”.

Encpk is	deterministic,	so:
if	one	encrypts	twice	the	same	message	then	the	

ciphertexts are	the	same

Therefore	if	the	message	spaceM is	small,	the	adversary	can	
check	all	possible	messages:

given	a	ciphertext c do:
for	every	m	є M check	if	Encpk(m)	=	c

for	example	if	M={yes,no},	then	the	encryption	is	not	
secure.



Algebraic properties of RSA
1. RSA is	homorphic:

Enc(e,N)(m0 ·	m1)	=	(m0 ·	m1)e
=	m0

e ·	m1
e

=	Enc(e,N )(m0)	·	Enc(e,N )(m1)
why	is	it	bad?

By	checking	if
c0 ·	c1 = c

the	adversary	can	detect	if
Dec(d,N) (c0)	· Dec (d,N)(c1)	=	Decd(c)



Question: Is RSA secure?
Looks like it has some weaknesses...

Plan:
1. Provide a formal security definition.
2. Modify RSA so that it is secure according to this definition.



A mathematical view
A public-key encryption (PKE) scheme is a triple (Gen, Enc, 

Dec) of poly-time algorithms,  where
� Gen is a key-generation randomized algorithm that takes as

input a security parameter 1n and outputs a key pair (pk,sk).
� Enc is an encryption algorithm that takes as input the public 

key pk and a message m, and outputs a ciphertext c,
� Dec is an decryption algorithm that takes as input the private 

key pk and the ciphertext c, and outputs a message m’.

We will sometimes write Encpk(m) and Decsk(c) instead of 
Enc(pk,m) and Dec(sk,c).

Correctness

P(Decsk(Encpk(m))	≠	m) is negligible in n



A simplified view

oracle

has	to	guess	b

m0,m1

c	=	Enc(pk,mb)

choosesm0,m1

security	parameter
1n

1. selects	random
(pk,sk)	=	Gen(1n)

2. chooses	a	random	b	=	0,1

challenge	phase:

pk



CPA-security

Security	definition:

We	say	that	(Gen,Enc,Dec) has indistinguishable	
encryptions under	a	chosen-plaintext attack	(CPA) if	any	

randomized	polynomial	time adversary	

guesses	b	correctly	

with	probability	at	most 0.5	+ ε(n), where ε is	negligible.

Alternative	name: CPA-secure



Is the “handbook RSA” secure?

Not secure!
In fact:

No deterministic encryption scheme is secure.

How can the adversary win the game?
1. he just chooses any m0,m1 , 
2. computes c0=Enc(pk,m0) himself
3. compares the result.

Moral: encryption has to be randomized.

the	“handbook	RSA”
N	=	pq - RSA	modulus
e is	such	that gcd(e,d)	=	1, d	is	such	that ed =	1	(mod	φ(N))

Enc(N,e)(m)	=	me mod	N,	and	Dec(d,N)(c)	=	cd mod	N.



Encoding
Therefore, before encrypting a message we usually encode it (adding some 

randomness).

This has the following advantages:
• makes the encryption non-deterministic
• breaks the “algebraic properties” of encryption.



How is it done in real-life?
PKCS #1: RSA Encryption Standard Version 1.5:

public-key: (N,e)
let k := length on N in bytes.
let D := length of the plaintext
requirement: D ≤ k - 11.

Enc((N,e), m) := xe mod N, where x is equal to:

00000000 00000001 r 00000000 m

(k	- D	- 3) random	non-zero	
bytes

D bytes

k bytes



Security of the PKCS #1: RSA Encryption Standard Version 1.5.
It is believed to be CPA-secure.

It has however some weaknesses (it is not “chosen-ciphertext secure”).

Optimal Asymmetric Encryption Padding (OAEP) is a more secure encoding.

(we will not refer to that)



Algorithmic Issues

• The	implementation	of	the	
RSA	cryptosystem	requires	
various	algorithms
• Overall

•Representation	of	integers	of	
arbitrarily	large	size	and	
arithmetic	operations	on	
them

• Encryption
•Modular	power

• Decryption
•Modular	power

• Setup
•Generation	of	random	
numbers with	a	given	number	
of	bits	(to	generate	candidates	
p and	q)
•Primality	testing (to	check	that	
candidates	p and	q are	prime)
•Computation	of	the	GCD (to	
verify	that	e and	f(n) are	
relatively	prime)
•Computation	of	the	
multiplicative	inverse (to	
compute	d from	e)



Modular Power
• The	repeated	squaring	algorithm	
speeds	up	the	computation	of	a	
modular	power	ap mod n

• Write	the	exponent	p in	binary
p = pb - 1 pb - 2 … p1 p0

• Start	with
Q1 = apb - 1 mod n

• Repeatedly	compute
Qi = ((Qi - 1)2 mod n)apb - i mod n

• We	obtain
Qb = ap mod n

• The	repeated	squaring	algorithm	
performs	O (log p) arithmetic	
operations

• Example
•318 mod 19 (18 = 10010)
•Q1 = 31 mod 19 = 3
•Q2 = (32 mod 19)30 mod 19 = 9
•Q3 = (92 mod 19)30 mod 19 = 

81 mod 19  = 5
•Q4 = (52 mod 19)31 mod 19 =

(25 mod 19)3 mod 19 =
18 mod 19 = 18

•Q5 = (182 mod 19)30 mod 19 = 
(324 mod 19) mod 19 = 
17×19 + 1 mod 19 = 1

p5	- i 1 0 0 1 0
2p5	- i 3 1 1 3 1
Qi 3 9 5 18 1



Decryption can be done with CRT
• Why is it more efficient in this way?



How to construct PKE based on the hardness of discrete log?

RSA was a trapdoor permutation, so the construction was 
quite easy...

In case of the discrete log, we just have a one-way function.

Diffie and Hellman constructed something weaker than 
PKE: a key exchange protocol (also called key 
agreement protocol).

We’ll not describe it.  Then, we’ll show how to “convert it” 
into a PKE.



listens

Key exchange

Alice Bob

initially	they	share	no	secret

key	k key	k

Eve	should	have	no	information	about	k

We	will	formalize	it	later.
Let’s	first	show	the	protocol.



The Diffie-Hellman Key exchange
G – a group, where discrete log is believed to be hard
q = |G|
g – a generator of G

Alice Bob

x	←	Zq
h1 =	gx

y	←	Zq
h2 =	gy

output:
kA=(h2)x

output:
kB=(h1)y

equal	to:
gyx

equal	to:
gxy

equal!



Security of the Diffie-Hellman exchange

Eve

h1 =	gx h2 =	gyG,g

knows

Eve	should	have	no	information	about	gyx

gyx ?



Is it secure?
If the discrete log in G is easy then the DH key exchange is not secure.

(because the adversary can compute x and y from
gx and gy)

If the discrete log in G is hard, then...

it may also not be secure



Example: G = Zp
*

Alice Bob

x	←	Zq
h1 =	gx

y	←	Zq
h2 =	gy

x	is	even	iff h1 is	a	QR

y is	even	iff h2 is	a	QR
Therefore:
gyx is	a	QR iff (h1 is	a	QR)	or	(h2 is	a	QR)

So,	Eve	can	compute	some	information	about gyx
(namely:	if	it	is	a	QR,	or	not).

gyx ?



How to fix the previous problem?
• Intuitively: Pick only even numbers in the exponent!



A problem
The protocols that we discussed are secure only against a passive adversary

(that only eavesdrop).

What if the adversary is active?

She can launch a man-in-the-middle attack.



Man in the middle attack

Alice Bob

key	k key	k’key	k key	k’

I	am	Bob I	am	Alice

A	very	realistic	attack!

So,	is	this	thing	totally	useless?
No! (it	is	useful	as	a	building	block)



Plan

1. Problems with the handbook RSA 
encryption

2. Security definitions
3. How to encrypt with RSA?
4. Encryption based on discrete-log

1. first step: Diffie-Hellman key exchange
2. ElGamal encryption

5. Public-key vs. private key encryption



El Gamal encryption
El Gamal is another popular public-key encryption scheme.

It is based on the Diffie-Hellman key-exchange.



First observation
Remember that the one-time pad scheme can be generalized to 

any group?

E.g.: K = M = C = G.
• Enc(k,m) = m · k
• Dec(k,m) = m · k-1

So, if k is the key agreed in the DH key exchange, then 
Alice can send a message m Є G to Bob “encrypting it with k”  

by setting:
c := m · k



How does it look now?

Alice Bob

x	←	Zq y	←	Zq

h2 =	gy

(G,g,q,h1)

(G,g)	←	H(1n)

output:
m’	:=	c	·	(h2)-x

security	parameter	1n

plaintext
m

c	:=	m	·	(h1)y

since	(h2)x	 =	(h1)y
we	get:	m	=	m’

h1 =	gx



The last two messages can be sent 
together

Alice Bob

x	←	Zq y	←	Zq

(c, h2)	:=	
(m	·	(h1)y,	gy)

(G,g)	←	H(1n)

output:
m’	:=	c	·	(h2)-x

security	parameter	1n

(G,g,q,h1)h1 =	gx plaintext
m



ElGamal encryption

Alice Bob

x	←	Zq y	←	Zq

(c, h2)	:=	
(m	·	(h1)y,	gy)

(G,g)	←	H(1n)

output:
m’	:=	c	·	(h2)-x

security	parameter	1n

(G,g,q,h1)h1 =	gx plaintext
m

private	key

public	key

ciphertext

key	generation

decryption

encryption



El Gamal encryption

Gen(1n)	first	runs	H to	obtain	(G,q) and	q.		Then,	it	chooses	x	←	Zq
and	computes	h	:=	gx.					(note:	it	is	randomized	by	definition)

Let	H be	such	that	DDH is	hard	with	respect	to	H.

Enc((G,g,q,h),	m)	:=	(m	·	hy,	gy)	,	
where	m	Є G	and	y is	a	random	element	of	G

Dec((G,g,q,x),	(c1,c2))	:=	c1 ·	c2-x

The	public	key	is	(G,g,q,h).
The	private	key	is	(G,g,q,x).



Correctness

Dec((G,g,q,x),	(c1,c2))	=	c1 ·	c2-x

Enc((G,g,q,h),	m)	=	(m	·	hy,	gy)	

=	m	·	hy ·	(gy)-x

=	m	·	(gx)y	 ·	(gy)-x

=	m	·	gxy ·	g-yx

=	m

h	=	gx



Public key vs. private key encryption
Private-key encryption has a following advantage:

it is much more efficient.

What we do in practice:  
Use PKE to exchange secret key. Then use secret key to encrypt data.


