
ENEE 457: Computer Systems Security
10/3/16

Lecture 9
RSA Encryption and Diffie-Helmann Key Exchange

Charalampos (Babis) Papamanthou

Department of Electrical and Computer Engineering
University of Maryland, College Park



•Slides adjusted from:
•http://dziembowski.net/Teaching/BISS09/

©2009	by	Stefan	Dziembowski.	Permission	to	make	digital	or	hard	copies	of	part	or	all	of	
this	material	is	currently	granted	without	fee	provided	that	copies	are	made	only	for	
personal	or	classroom	use,	are	not	distributed	for	profit	or	commercial	advantage,	and	
that	new	copies	bear	this	notice	and	the	full	citation.



The “handbook RSA encryption”
N	=	pq - RSA modulus

e is	such	that gcd(e, φ(N)) =	1,
d	is	such	that ed =	1	(mod	φ(N))

Enc(e,N)	(m)	=	me mod	N, 

and Dec(d,N)	(c)	=	cd mod	N.



Problems

RSA has some “algebraic properties”.

Encpk is	deterministic,	so:
if	one	encrypts	twice	the	same	message	then	the	

ciphertexts are	the	same

Therefore	if	the	message	spaceM is	small,	the	adversary	can	
check	all	possible	messages:

given	a	ciphertext c do:
for	every	m	є M check	if	Encpk(m)	=	c

for	example	if	M={yes,no},	then	the	encryption	is	not	
secure.



Algebraic properties of RSA
1. RSA is	homorphic:

Enc(e,N)(m0 ·	m1)	=	(m0 ·	m1)e
=	m0

e ·	m1
e

=	Enc(e,N )(m0)	·	Enc(e,N )(m1)
why	is	it	bad?

By	checking	if
c0 ·	c1 = c

the	adversary	can	detect	if
Dec(d,N) (c0)	· Dec (d,N)(c1)	=	Decd(c)



Question: Is RSA secure?
Looks like it has some weaknesses...

Plan:
1. Provide a formal security definition.
2. Modify RSA so that it is secure according to this definition.



A mathematical view
A public-key encryption (PKE) scheme is a triple (Gen, Enc, 

Dec) of poly-time algorithms,  where
� Gen is a key-generation randomized algorithm that takes as

input a security parameter 1n and outputs a key pair (pk,sk).
� Enc is an encryption algorithm that takes as input the public 

key pk and a message m, and outputs a ciphertext c,
� Dec is an decryption algorithm that takes as input the private 

key pk and the ciphertext c, and outputs a message m’.

We will sometimes write Encpk(m) and Decsk(c) instead of 
Enc(pk,m) and Dec(sk,c).

Correctness

P(Decsk(Encpk(m))	≠	m) is negligible in n



A simplified view

oracle

has	to	guess	b

m0,m1

c	=	Enc(pk,mb)

choosesm0,m1

security	parameter
1n

1. selects	random
(pk,sk)	=	Gen(1n)

2. chooses	a	random	b	=	0,1

challenge	phase:

pk



CPA-security

Security	definition:

We	say	that	(Gen,Enc,Dec) has indistinguishable	
encryptions under	a	chosen-plaintext attack	(CPA) if	any	

randomized	polynomial	time adversary	

guesses	b	correctly	

with	probability	at	most 0.5	+ ε(n), where ε is	negligible.

Alternative	name: CPA-secure



Is the “handbook RSA” secure?

Not secure!
In fact:

No deterministic encryption scheme is secure.

How can the adversary win the game?
1. he just chooses any m0,m1 , 
2. computes c0=Enc(pk,m0) himself
3. compares the result.

Moral: encryption has to be randomized.

the	“handbook	RSA”
N	=	pq - RSA	modulus
e is	such	that gcd(e,d)	=	1, d	is	such	that ed =	1	(mod	φ(N))

Enc(N,e)(m)	=	me mod	N,	and	Dec(d,N)(c)	=	cd mod	N.



Encoding
Therefore, before encrypting a message we usually encode it (adding some 

randomness).

This has the following advantages:
• makes the encryption non-deterministic
• breaks the “algebraic properties” of encryption.



How is it done in real-life?
PKCS #1: RSA Encryption Standard Version 1.5:

public-key: (N,e)
let k := length on N in bytes.
let D := length of the plaintext
requirement: D ≤ k - 11.

Enc((N,e), m) := xe mod N, where x is equal to:

00000000 00000001 r 00000000 m

(k	- D	- 3) random	non-zero	
bytes

D bytes

k bytes



Security of the PKCS #1: RSA Encryption Standard Version 1.5.
It is believed to be CPA-secure.

It has however some weaknesses (it is not “chosen-ciphertext secure”).

Optimal Asymmetric Encryption Padding (OAEP) is a more secure encoding.

(we will not refer to that)



Algorithmic Issues

• The	implementation	of	the	
RSA	cryptosystem	requires	
various	algorithms
• Overall

•Representation	of	integers	of	
arbitrarily	large	size	and	
arithmetic	operations	on	
them

• Encryption
•Modular	power

• Decryption
•Modular	power

• Setup
•Generation	of	random	
numbers with	a	given	number	
of	bits	(to	generate	candidates	
p and	q)
•Primality	testing (to	check	that	
candidates	p and	q are	prime)
•Computation	of	the	GCD (to	
verify	that	e and	f(n) are	
relatively	prime)
•Computation	of	the	
multiplicative	inverse (to	
compute	d from	e)



Modular Power
• The	repeated	squaring	algorithm	
speeds	up	the	computation	of	a	
modular	power	ap mod n

• Write	the	exponent	p in	binary
p = pb - 1 pb - 2 … p1 p0

• Start	with
Q1 = apb - 1 mod n

• Repeatedly	compute
Qi = ((Qi - 1)2 mod n)apb - i mod n

• We	obtain
Qb = ap mod n

• The	repeated	squaring	algorithm	
performs	O (log p) arithmetic	
operations

• Example
•318 mod 19 (18 = 10010)
•Q1 = 31 mod 19 = 3
•Q2 = (32 mod 19)30 mod 19 = 9
•Q3 = (92 mod 19)30 mod 19 = 

81 mod 19  = 5
•Q4 = (52 mod 19)31 mod 19 =

(25 mod 19)3 mod 19 =
18 mod 19 = 18

•Q5 = (182 mod 19)30 mod 19 = 
(324 mod 19) mod 19 = 
17×19 + 1 mod 19 = 1

p5	- i 1 0 0 1 0
2p5	- i 3 1 1 3 1
Qi 3 9 5 18 1



Decryption can be done with CRT
• Why is it more efficient in this way?



How to construct PKE based on the hardness of discrete log?

RSA was a trapdoor permutation, so the construction was 
quite easy...

In case of the discrete log, we just have a one-way function.

Diffie and Hellman constructed something weaker than 
PKE: a key exchange protocol (also called key 
agreement protocol).

We’ll not describe it.  Then, we’ll show how to “convert it” 
into a PKE.



listens

Key exchange

Alice Bob

initially	they	share	no	secret

key	k key	k

Eve	should	have	no	information	about	k

We	will	formalize	it	later.
Let’s	first	show	the	protocol.



The Diffie-Hellman Key exchange
G – a group, where discrete log is believed to be hard
q = |G|
g – a generator of G

Alice Bob

x	←	Zq
h1 =	gx

y	←	Zq
h2 =	gy

output:
kA=(h2)x

output:
kB=(h1)y

equal	to:
gyx

equal	to:
gxy

equal!



Security of the Diffie-Hellman exchange

Eve

h1 =	gx h2 =	gyG,g

knows

Eve	should	have	no	information	about	gyx

gyx ?



Is it secure?
If the discrete log in G is easy then the DH key exchange is not secure.

(because the adversary can compute x and y from
gx and gy)

If the discrete log in G is hard, then...

it may also not be secure



Example: G = Zp
*

Alice Bob

x	←	Zq
h1 =	gx

y	←	Zq
h2 =	gy

x	is	even	iff h1 is	a	QR

y is	even	iff h2 is	a	QR
Therefore:
gyx is	a	QR iff (h1 is	a	QR)	or	(h2 is	a	QR)

So,	Eve	can	compute	some	information	about gyx
(namely:	if	it	is	a	QR,	or	not).

gyx ?



How to fix the previous problem?
• Intuitively: Pick only even numbers in the exponent!



A problem
The protocols that we discussed are secure only against a passive adversary

(that only eavesdrop).

What if the adversary is active?

She can launch a man-in-the-middle attack.



Man in the middle attack

Alice Bob

key	k key	k’key	k key	k’

I	am	Bob I	am	Alice

A	very	realistic	attack!

So,	is	this	thing	totally	useless?
No! (it	is	useful	as	a	building	block)



Plan

1. Problems with the handbook RSA 
encryption

2. Security definitions
3. How to encrypt with RSA?
4. Encryption based on discrete-log

1. first step: Diffie-Hellman key exchange
2. ElGamal encryption

5. Public-key vs. private key encryption



El Gamal encryption
El Gamal is another popular public-key encryption scheme.

It is based on the Diffie-Hellman key-exchange.



First observation
Remember that the one-time pad scheme can be generalized to 

any group?

E.g.: K = M = C = G.
• Enc(k,m) = m · k
• Dec(k,m) = m · k-1

So, if k is the key agreed in the DH key exchange, then 
Alice can send a message m Є G to Bob “encrypting it with k”  

by setting:
c := m · k



How does it look now?

Alice Bob

x	←	Zq y	←	Zq

h2 =	gy

(G,g,q,h1)

(G,g)	←	H(1n)

output:
m’	:=	c	·	(h2)-x

security	parameter	1n

plaintext
m

c	:=	m	·	(h1)y

since	(h2)x	 =	(h1)y
we	get:	m	=	m’

h1 =	gx



The last two messages can be sent 
together

Alice Bob

x	←	Zq y	←	Zq

(c, h2)	:=	
(m	·	(h1)y,	gy)

(G,g)	←	H(1n)

output:
m’	:=	c	·	(h2)-x

security	parameter	1n

(G,g,q,h1)h1 =	gx plaintext
m



ElGamal encryption

Alice Bob

x	←	Zq y	←	Zq

(c, h2)	:=	
(m	·	(h1)y,	gy)

(G,g)	←	H(1n)

output:
m’	:=	c	·	(h2)-x

security	parameter	1n

(G,g,q,h1)h1 =	gx plaintext
m

private	key

public	key

ciphertext

key	generation

decryption

encryption



El Gamal encryption

Gen(1n)	first	runs	H to	obtain	(G,q) and	q.		Then,	it	chooses	x	←	Zq
and	computes	h	:=	gx.					(note:	it	is	randomized	by	definition)

Let	H be	such	that	DDH is	hard	with	respect	to	H.

Enc((G,g,q,h),	m)	:=	(m	·	hy,	gy)	,	
where	m	Є G	and	y is	a	random	element	of	G

Dec((G,g,q,x),	(c1,c2))	:=	c1 ·	c2-x

The	public	key	is	(G,g,q,h).
The	private	key	is	(G,g,q,x).



Correctness

Dec((G,g,q,x),	(c1,c2))	=	c1 ·	c2-x

Enc((G,g,q,h),	m)	=	(m	·	hy,	gy)	

=	m	·	hy ·	(gy)-x

=	m	·	(gx)y	 ·	(gy)-x

=	m	·	gxy ·	g-yx

=	m

h	=	gx



Public key vs. private key encryption
Private-key encryption has a following advantage:

it is much more efficient.

What we do in practice:  
Use PKE to exchange secret key. Then use secret key to encrypt data.


