ENEE 457: Computer Systems Security 10/3/16

RSA Encryption and Diffie-Helmann Key Exchange

Charalampos (Babis) Papamanthou

Department of Electrical and Computer Engineering University of Maryland, College Park

•Slides adjusted from:

http://dziembowski.net/Teaching/BISS09/

©2009 by Stefan Dziembowski. Permission to make digital or hard copies of part or all of this material is currently granted without fee *provided that copies are made only for personal or classroom use, are not distributed for profit or commercial advantage, and that new copies bear this notice and the full citation*.

The "handbook RSA encryption"

- N = pq RSA modulus
- e is such that $gcd(e, \phi(N)) = 1$, d is such that $ed = 1 \pmod{\phi(N)}$

 $Enc_{(e,N)}(m) = m^e \mod N$,

and $Dec_{(d,N)}(c) = c^d \mod N$.

Problems

Enc_{pk} is deterministic, so: if one encrypts twice the same message then the ciphertexts are the same

Therefore if the message space **M** is small, the adversary can check all possible messages:

given a ciphertext c do: for every m ε M check if Enc_{pk}(m) = c

for example if M={yes,no}, then the encryption is not
secure.

RSA has some "algebraic properties".

Algebraic properties of RSA

RSA is homorphic: 1. $Enc_{(e,N)}(m_0 \cdot m_1) = (m_0 \cdot m_1)^e$ ¯ m₀^e · m₁^e $= Enc_{(e,N)}(m_0) \cdot Enc_{(e,N)}(m_1)$ why is it bad? By checking if $\mathbf{c}_0 \cdot \mathbf{c}_1 = \mathbf{c}$ the adversary can detect if $Dec_{(d,N)}(c_0) \cdot Dec_{(d,N)}(c_1) = Dec_d(c)$

Question: Is RSA secure?

Looks like it has some weaknesses...

Plan:

- 1. Provide a formal security definition.
- 2. Modify **RSA** so that it is secure according to this definition.

A mathematical view

- A public-key encryption (PKE) scheme is a triple (Gen, Enc, Dec) of poly-time algorithms, where
- **Gen** is a **key-generation** randomized algorithm that takes as input a security parameter **1**ⁿ and outputs a key pair (**pk**,**sk**).
- Enc is an encryption algorithm that takes as input the public key pk and a message m, and outputs a ciphertext c,
- Dec is an decryption algorithm that takes as input the private key pk and the ciphertext c, and outputs a message m'.

We will sometimes write Enc_{pk}(m) and Dec_{sk}(c) instead of Enc(pk,m) and Dec(sk,c).

Correctness

P(Dec_{sk}(Enc_{pk}(m)) ≠ m) is negligible in n

A simplified view

has to guess b

CPA-security

Alternative name: CPA-secure

Security definition:

We say that (Gen,Enc,Dec) has indistinguishable encryptions under a chosen-plaintext attack (CPA) if any

randomized polynomial time adversary

guesses **b** correctly

with probability at most $0.5 + \epsilon(n)$, where ϵ is negligible.

Is the "handbook RSA" secure?

the "handbook RSA"

 $N = pq - RSA \mod u$ e is such that gcd(e,d) = 1, d is such that ed = 1 (mod $\phi(N)$) Enc_(N,e)(m) = m^e mod N, and Dec_(d,N)(c) = c^d mod N.

Not secure!

In fact:

No deterministic encryption scheme is secure.

How can the adversary win the game?

- 1. he just chooses any $\mathbf{m_0}, \mathbf{m_1}$,
- 2. computes **c**₀=**Enc**(**pk**,**m**₀) himself
- 3. compares the result.

Moral: encryption has to be randomized.

Encoding

- Therefore, before encrypting a message we usually **encode it** (adding some randomness).
- This has the following advantages:
- makes the encryption non-deterministic
- breaks the "algebraic properties" of encryption.

How is it done in real-life?

PKCS #1: RSA Encryption Standard Version 1.5:

public-key: (N,e) let $\mathbf{k} :=$ length on N in bytes. let $\mathbf{D} :=$ length of the plaintext requirement: $\mathbf{D} \leq \mathbf{k} - \mathbf{11}$.

Enc((N,e), m) := $x^e \mod N$, where x is equal to:

Security of the PKCS #1: RSA Encryption Standard Version 1.5.

It is **believed** to be CPA-secure.

It has however some weaknesses (it is not "chosen-ciphertext secure").

Optimal Asymmetric Encryption Padding (OAEP) is a more secure encoding.

(we will not refer to that)

Algorithmic Issues

- The implementation of the RSA cryptosystem requires various algorithms
- Overall
 - Representation of integers of arbitrarily large size and arithmetic operations on them
- Encryption
 - Modular power
- Decryption
 - Modular power

- Setup
 - Generation of random numbers with a given number of bits (to generate candidates *p* and *q*)
 - Primality testing (to check that candidates *p* and *q* are prime)
 - Computation of the GCD (to verify that e and $\phi(n)$ are relatively prime)
 - Computation of the multiplicative inverse (to compute *d* from *e*)

Modular Power

- The repeated squaring algorithm speeds up the computation of a modular power a^p mod n
- Write the exponent p in binary $p = p_{b-1} p_{b-2} \dots p_1 p_0$
- Start with
 - $\boldsymbol{Q}_1 = \boldsymbol{a}^{\boldsymbol{p}_{\boldsymbol{b}-1}} \bmod \boldsymbol{n}$
- Repeatedly compute $Q_i = ((Q_{i-1})^2 \mod n)a^{p_{b-i}} \mod n$
- We obtain

 $Q_b = a^p \mod n$

• The repeated squaring algorithm performs $O(\log p)$ arithmetic operations

- Example
 - $3^{18} \mod 19 (18 = 10010)$
 - $Q_1 = 3^1 \mod 19 = 3$
 - $Q_2 = (3^2 \mod 19)3^0 \mod 19 = 9$
 - $Q_3 = (9^2 \mod 19)3^0 \mod 19 = 81 \mod 19 = 5$
 - $Q_4 = (5^2 \mod 19)3^1 \mod 19 =$ (25 mod 19)3 mod 19 = 18 mod 19 = 18

•
$$Q_5 = (18^2 \mod 19)3^0 \mod 19 =$$

(324 mod 19) mod 19 =
17.19 + 1 mod 19 = 1

р _{5 - і}	1	0	0	1	0
2 ^{p5-i}	3	1	1	3	1
Qi	3	9	5	18	1

Decryption can be done with CRT

• Why is it more efficient in this way?

How to construct PKE based on the hardness of discrete log?

RSA was a trapdoor permutation, so the construction was quite easy...

In case of the **discrete log**, we just have a one-way function.

Diffie and Hellman constructed something weaker than PKE: a **key exchange protocol** (also called key **agreement** protocol).

We'll not describe it. Then, we'll show how to "convert it" into a **PKE**.

initially they share no secret

The Diffie-Hellman Key exchange

G - a group, where **discrete log is believed to be hard** q = |G|

g – a generator of **G**

Security of the Diffie-Hellman exchange

Eve should have no information about g^{yx}

Is it secure?

If the **discrete log in G** is easy then the **DH key exchange** is **<u>not</u> secure**.

(because the adversary can compute **x** and **y** from $\mathbf{g}^{\mathbf{x}}$ and $\mathbf{g}^{\mathbf{y}}$)

If the discrete log in **G** is hard, then...

it may also not be secure

So, Eve can compute some information about g^{yx} (namely: if it is a **QR**, or not).

How to fix the previous problem?

• Intuitively: Pick only even numbers in the exponent!

A problem

The protocols that we discussed are secure only against a **passive adversary** (that only eavesdrop).

What if the adversary is **active**?

She can launch a **man-in-the-middle** attack.

Man in the middle attack

A very realistic attack!

So, is this thing totally useless? No! (it is useful as a building block)

Plan

- 1. Problems with the handbook RSA encryption
- 2. Security definitions
- 3. How to encrypt with RSA?
- 4. Encryption based on discrete-log
 - 1. first step: Diffie-Hellman key exchange
 - 2. ElGamal encryption
- 5. Public-key vs. private key encryption

El Gamal encryption

El Gamal is another popular public-key encryption scheme.

It is based on the **Diffie-Hellman** key-exchange.

First observation

Remember that the one-time pad scheme can be generalized to any group?

- E.g.: $\mathbf{K} = \mathbf{M} = \mathbf{C} = \mathbf{G}$.
- Enc(k,m) = $m \cdot k$
- $Dec(k,m) = m \cdot k^{-1}$

So, if **k** is the key agreed in the **DH key exchange**, then Alice can send a message **m € G** to Bob "encrypting it with **k**" by setting: **c := m · k**

How does it look now?

The last two messages can be sent together

ElGamal encryption

El Gamal encryption

Let **H** be such that **DDH** is hard with respect to **H**.

Gen(1ⁿ) first runs **H** to obtain **(G,q)** and **q**. Then, it chooses $\mathbf{x} \leftarrow \mathbf{Z}_q$ and computes $\mathbf{h} := \mathbf{g}^{\mathbf{x}}$. (note: it is **randomized by definition**)

The public key is **(G,g,q,h).** The private key is **(G,g,q,x)**.

> Enc((G,g,q,h), m) := $(m \cdot h^y, g^y)$, where m \in G and y is a random element of G

Dec((G,g,q,x), (c_1, c_2)) := $c_1 \cdot c_2^{-x}$

 $h = g^{x}$

$$Enc((G,g,q,h), m) = (m \cdot h^{y}, g^{y})$$

Dec((G,g,q,x), (c₁,c₂)) = c₁ · c₂^{-x} = m · h^y · (g^y)^{-x} = m · (g^x)^y · (g^y)^{-x} = m · g^{xy} · g^{-yx} = m

Public key vs. private key encryption

Private-key encryption has a following advantage:

it is much more efficient.

What we do in practice:

Use PKE to exchange secret key. Then use secret key to encrypt data.