ENEE 459-C Computer Security

Digital signatures and security protocols

The Big Picture

	Secret Key Setting	Public Key Setting
Secrecy / Confidentiality	Stream ciphers Block ciphers + encryption modes: AES, DES	Public key encryption: RSA, El Gamal, etc.
Authenticity / Integrity	Message Authentication Code: SHA-2	Digital Signatures: RSA, etc.

Do you trust your public key?

- Impostor Claims to be a True Party
 - True party has a public and private key
 - Impostor also has a public and private key
- Impostor sends impostor's own public key to the verifier
 - Says, "This is the true party's public key"
 - This is the critical step in the deception

X.509 Certificates

- Defines framework for authentication services:
 - Defines that public keys stored as certificates in a public directory.
 - Certificates are issued and signed by an entity called certification authority
 (CA)
- Used by numerous applications: SSL
- Example: see certificates accepted by your browser

Example: Oracle's certificate

Certificate Hierarchy

- Single CA certifying every public key is impractical
- Instead, use trusted root authorities
- Root CA signs certificates for intermediate CAs, they sign certificates for lower-level CAs, etc.
 - Certificate "chain of trust"
 - sig_{Verisign}("UMD", PK_{UMD})
 - sig_{UMD}("faculty", PK_{faculty})
 - sig_{faculty}("cpap", PK_{cpap})

Example

What bad things can happen if the root CA system is compromised?

Certificate Revocation

- Revocation is <u>very</u> important
- Many valid reasons to revoke a certificate
 - Private key corresponding to the certified public key has been compromised
 - User stopped paying his certification fee to this CA and CA no longer wishes to certify him
 - CA's certificate has been compromised!
- Expiration is a form of revocation, too
 - Many deployed systems don't bother with revocation
 - Re-issuance of certificates is a big revenue source for certificate authorities

Integrated Security System

- When two parties communicate ...
 - Their software usually handles the details
 - First, negotiate security methods
 - Then, authenticate one another
 - Then, exchange symmetric session key
 - Then can communicate securely using symmetric session key and message-bymessage authentication

SSL Integrated Security System

- SSL
 - Secure Sockets Layer
 - Developed by Netscape
- TLS (now)
 - Netscape gave IETF (Internet Engineering Task Force) control over SSL
 - IETF renamed it TLS (Transport Layer Security)
 - Usually still called SSL

Location of SSL

- Below the Application Layer
 - Protects all application exchanges
 - Not limited to any single application
 - WWW transactions, e-mail, etc.

Protocols: Key agreement

Key Agreement among Multiple Parties

- For a group of N parties, every pair needs to share a different key
 - Needs to establish N(N-1)/2 keys, which are too many
- Solution: Uses a central authority, a.k.a., Trusted Third Party (TTP)
 - Every party shares a key with a central server.
 - In an organization with many users, often times already every user shares a secret with a central TTP, e.g., password for an organization-wide account

A simple protocol

- Parties: A, B, and trusted server T
- Setup: A and T share K_{AT}, B and T share K_{BT}
- Goal: Mutual entity authentication between A and B; key establishment
- Messages:

$$A \to T$$
: A, B (1)
 $A \leftarrow T$: E[K_{AT}] (B, k, E[K_{BT}](k,A)) (2)
 $A \to B$: E[K_{BT}] (k, A) (3)
 $A \leftarrow B$: E[k] (N_B) (4)
 $A \to B$: E[k] (N_B-1) (5)

What is the problem here?

A more secure protocol

- Parties: A, B, and trusted server T
- Setup: A and T share K_{AT}, B and T share K_{BT}
- Goal: Mutual entity authentication between A and B; key establishment
- Messages:

$$A \to T$$
: A, B, N_A (1)
 $A \leftarrow T$: E[K_{AT}] (N_A, B, k, E[K_{BT}](k,A)) (2)
 $A \to B$: E[K_{BT}] (k, A) (3)
 $A \leftarrow B$: E[k] (N_B) (4)
 $A \to B$: E[k] (N_B-1) (5)

With this modification, A is sure he has a fresh key. Are we done?

Needham-Schroeder protocol

- Parties: A, B, and trusted server T
- Setup: A and T share K_{AT}, B and T share K_{BT}
- Goal: Mutual entity authentication between A and B; key establishment
- Messages:

```
A \to B: A \qquad (1)
B \to A: E[K_{BT}](A,N'_{B}) \qquad (2)
A \to T: A, B, N_{A}, E[K_{BT}](A,N'_{B}) \qquad (3)
A \leftarrow T: E[K_{AT}] (N_{A}, B, k, E[K_{BT}](k,A,N'_{B})) \qquad (4)
A \to B: E[K_{BT}](k,A,N'_{B}) \qquad (5)
A \leftarrow B: E[k] (N_{B}) \qquad (6)
A \to B: E[k] (N_{B}-1) \qquad (7)
```

With this modification, step 5 cannot be compromised

Kerberos

- Implement the idea of Needham-Schroeder protocol
- Kerberos is a network authentication protocol
- Provides authentication and secure communication
- Relies entirely on symmetric cryptography
- Developed at MIT: two versions, Version 4 and Version 5 (specified as RFC1510)
- http://web.mit.edu/kerberos/www
- Used in many systems, e.g., Windows 2000 and later as default authentication protocol

Kerberos Drawback

- Single point of failure:
 - requires online Trusted Third Party:
 Kerberos server
- Useful primarily inside an organization
 - Does it scale to Internet? What is the main difficulty?