

ENEE 459-C
Computer Security

Public key Encryption:
RSA and ElGamal

Review of Secret Key
(Symmetric) Cryptography
§  Confidentiality

§  block ciphers with encryption modes
§  Integrity

§ Message authentication code (keyed hash
functions)

§  Limitation: sender and receiver must
share the same key
§  Needs secure channel for key distribution
§  Impossible for two parties having no prior

relationship
§  Needs many keys for n parties to

communicate

Concept of Public Key Encryption
§  Each party has a pair (K, K-1) of keys:

§  K is the public key, and used for encryption
§  K-1 is the private key, and used for decryption
§  Satisfies DK-1[EK[M]] = M

§  Knowing the public-key K, it is computationally infeasible
to compute the private key K-1
§  Easy to check K,K-1 is a pair

§  The public-key K may be made publicly available, e.g., in
a publicly available directory
§  Many can encrypt, only one can decrypt

§  Public-key systems aka asymmetric crypto systems

Public Key Cryptography Early
History
§  Proposed by Diffie and Hellman, documented in “New

Directions in Cryptography” (1976)
1.  Public-key encryption schemes
2.  Key distribution systems

§  Diffie-Hellman key agreement protocol
3.  Digital signature

§  Public-key encryption was proposed in 1970 in a
classified paper by James Ellis
§  paper made public in 1997 by the British Governmental

Communications Headquarters

§  Concept of digital signature is still originally due to Diffie
& Hellman

Public Key Encryption Algorithms
§  Almost all public-key encryption

algorithms use either number theory and
modular arithmetic, or elliptic curves

§  RSA
§  based on the hardness of factoring large

numbers

§  El Gamal
§  Based on the hardness of solving discrete

logarithm
§  Use the same idea as Diffie-Hellman key

agreement

RSA Cryptosystem

§ Setup:
§ n = pq, with p and q primes
§ e relatively prime to
φ(n) = (p - 1) (q - 1)

§ d inverse of e in Zφ(n)
§ Keys:

§ Public key: KE = (n, e)
§ Private key: KD = d

§ Encryption:
§ Plaintext M in Zn
§ C = Me mod n

§ Decryption:
§ M = Cd mod n

§ Example
n  Setup:

w p = 7, q = 17
w n = 7⋅17 = 119
w φ(n) = 6⋅16 = 96
w e = 5
w d = 77

n  Keys:
w public key: (119, 5)
w private key: 77

n  Encryption:
w M = 19
w C = 195 mod 119 = 66

n  Decryption:
w C = 6677 mod 119 = 19

Complete RSA Example
§ Setup:

§ p = 5, q = 11
§ n = 5⋅11 = 55
§ φ(n) = 4⋅10 = 40
§ e = 3
§ d = 27 (3⋅27 = 81 = 2⋅40 + 1)

M 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
C 1 8 27 9 15 51 13 17 14 10 11 23 52 49 20 26 18 2
M 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
C 39 25 21 33 12 19 5 31 48 7 24 50 36 43 22 34 30 16
M 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
C 53 37 29 35 6 3 32 44 45 41 38 42 4 40 46 28 47 54

•  Encryption
n C = M3 mod 55

• Decryption
n M = C27 mod 55

Questions 1

§  In the previous example, why encrypting
small messages, e.g., M=2,3,4 is tricky?
§  Recall Enc(M) = M^3 mod 55

§  Let
N=20434394384355534343545428943483
434356091. Assume it is the product of
two primes
§  Can e be the number 4343253453434536?

Questions 2
§ Problem with RSA?
§ Does it satisfy semantic security?

Security of RSA
§  Security of RSA based on

difficulty of factoring
§  Widely believed
§  Best known algorithm takes

exponential time

§  How can you break RSA if you
can factor?

§  In 1999, 512-bit challenge
factored in 4 months using
35.7 CPU-years
§  160 175-400 MHz SGI and Sun
§  8 250 MHz SGI Origin
§  120 300-450 MHz Pentium II
§  4 500 MHz Digital/Compaq

§  In 2005, a team of researchers
factored the RSA-640 challenge
number using 30 2.2GHz CPU years

§  In 2004, the prize for factoring
RSA-2048 was $200,000

§  Current practice is 2,048-bit keys
§  Estimated resources needed to factor

a number within one year
§  Note that for RSA to be secure, both p

and q must be large primes

Length
(bits)

PCs Memory

430 1 128MB
760 215,000 4GB

1,020 342×106 170GB
1,620 1.6×1015 120TB

Correctness

§  We show the correctness of
the RSA cryptosystem for the
case when the plaintext M
does not divide n

§  Namely, we show that
 (Me)d mod n = M

§  Since ed mod φ(n) = 1, there is
an integer k such that

 ed = kφ(n) + 1
§  Since M does not divide n, by

Euler’s theorem we have
Mφ(n) mod n = 1

§  Thus, we obtain
 (Me)d mod n =
 Med mod n =

Mkφ(n) + 1 mod n =
MMkφ(n) mod n =

 M (Mφ(n))k mod n =
 M (Mφ(n) mod n)k mod n =
 M (1)k mod n =
 M mod n =

M
§  Proof of correctness can be

extended to the case when
the plaintext M divides n

Algorithmic Issues

§ The implementation of
the RSA cryptosystem
requires various
algorithms

§ Overall
§ Representation of integers
of arbitrarily large size and
arithmetic operations on
them

§ Encryption
§ Modular power

§ Decryption
§ Modular power

§ Setup
§ Generation of random
numbers with a given
number of bits (to generate
candidates p and q)
§ Primality testing (to check
that candidates p and q are
prime)
§ Computation of the GCD (to
verify that e and φ(n) are
relatively prime)
§ Computation of the
multiplicative inverse (to
compute d from e)

Modular Power
§  The repeated squaring

algorithm speeds up the
computation of a modular
power ap mod n

§  Write the exponent p in binary
p = pb - 1 pb - 2 … p1 p0

§  Start with
Q1 = apb - 1 mod n

§  Repeatedly compute
Qi = ((Qi - 1)2 mod n)apb - i mod n

§  We obtain
Qb = ap mod n

§  The repeated squaring
algorithm performs O (log p)
arithmetic operations

§  Example
§ 318 mod 19 (18 = 10010)
§ Q1 = 31 mod 19 = 3
§ Q2 = (32 mod 19)30 mod 19 = 9
§ Q3 = (92 mod 19)30 mod 19 =

 81 mod 19 = 5
§ Q4 = (52 mod 19)31 mod 19 =

 (25 mod 19)3 mod 19 =
 18 mod 19 = 18

§ Q5 = (182 mod 19)30 mod 19 =
 (324 mod 19) mod 19 =
 17⋅19 + 1 mod 19 = 1

p5 - i 1 0 0 1 0
2p5 - i 3 1 1 3 1
Qi 3 9 5 18 1

Chinese remainder theorem light

§  Let N=pq. Let
§  x mod p = a1
§  x mod q = a2

§  Then
§  x mod N = a1* q * inverse(q in Zp)+ a2 * p * inverse(p in Zq) mod N
§  Let’s prove it
§  This can be used to compute W^x mod N, for big W^x, more efficiently
§  How?

§  Use of theorem
§  Say you want to compute 18^25 mod 35 (35 = 5*7)
§  Compute 18^25 mod 5 = 18^(25 mod 4) mod 5= 18^1 mod 5 = 3 = a1
§  Compute 18^25 mod 7 = 18^(25 mod 6) mod 7= 18^1 mod 7 = 4 = a2
§  Note that inverse(5 in Z7)=3 and inverse(7 in Z5)=3
§  Therefore the solution we are looking for is 3*7*3+4*5*3 mod 35= 18

§  Used in the decryption procedure of RSA: Why cannot it be used in the
encryption?

§  Also we can prove correctness of RSA for general message M

Pseudoprimality Testing
§  Testing whether a number is prime (primality testing) is a difficult

problem, though polynomial-time algorithms exist
§  An integer n ≥ 2 is said to be a base-x pseudoprime if

§  xn - 1 mod n = 1 (Fermat’s little theorem)

§  Composite base-x pseudoprimes are rare:
§  A random 100-bit integer is a composite base-2 pseudoprime with

probability less than 10-13

§  The smallest composite base-2 pseudoprime is 341
§  Base-x pseudoprimality testing for an integer n:

§  Check whether xn - 1 mod n = 1
§  Can be performed efficiently with the repeated squaring algorithm

RSA security and properties

§  Plain RSA is deterministic.
§  Why is this a problem?
§  Plain RSA is also homomorphic. What does this mean?

§  Multiply ciphertexts to get ciphertext of multiplication!
§  [(m1)e mod N][(m2)e mod N] = (m1m2)e mod N

§  However, not additively homomorphic
§  Both additively + multiplicative homomorphic (aka

fully-homomorphic) encryption open problem till 2009
§  A breakthrough result from IBM (Craig Gentry)

answered this open problem, constructing such an
encryption scheme

Real World Usage of RSA
§  Randomized RSA

§  To encrypt a message M under an RSA public key (n,e),
generate a new random session AES key K, compute the
cipher text as
§  [Ke mod N, AESK(M)]

§  This prevents an adversary distinguishing two
encryptions of the same message since K is chosen at
random every time the encryption takes place

§  Could the following encryption work for arbitrary
messages M?
§  (M||r)e mod N, for random r

ElGamal Encryption
§  Encrypts messages m ∈ Zp
§  Secret key: random number a∈ Zp
§  Public key: A = ga
§  Encryption: Pick a random r ∈ Zp and set

§  R = Ar = gar

§  c1 = gr

§  Then Enc(m) = (c1,c2) where c2=mR mod p
§  Dec(c1,c2) = c2*(1/c1

a) mod p where c1
a= gar

§  Security depends on Computational Diffie-Hellman
(CDH) assumption: given (g, ga,gb) it is hard to
compute gab

§  Do not use same r twice

