
 
 

ENEE 459-C 
Computer Security 

Public key Encryption: 
RSA and ElGamal 

 



Review of Secret Key 
(Symmetric) Cryptography  
§  Confidentiality 

§  block ciphers with encryption modes 
§  Integrity 

§ Message authentication code (keyed hash 
functions) 

§  Limitation: sender and receiver must 
share the same key 
§  Needs secure channel for key distribution 
§  Impossible for two parties having no prior 

relationship 
§  Needs many keys for n parties to 

communicate 



Concept of Public Key Encryption 
§  Each party has a pair (K, K-1) of keys:  

§  K is the public key, and used for encryption 
§  K-1 is the private key, and used for decryption 
§  Satisfies    DK-1[EK[M]] = M 

§  Knowing the public-key K, it is computationally infeasible 
to compute the private key K-1 
§  Easy to check K,K-1 is a pair 

§  The public-key K may be made publicly available, e.g., in 
a publicly available directory 
§  Many can encrypt, only one can decrypt 

§  Public-key systems aka asymmetric crypto systems 



Public Key Cryptography Early 
History 
§  Proposed by Diffie and Hellman, documented in “New 

Directions in Cryptography” (1976)  
1.  Public-key encryption schemes 
2.  Key distribution systems 

§  Diffie-Hellman key agreement protocol 
3.  Digital signature 

§  Public-key encryption was proposed in 1970 in a 
classified paper by James Ellis 
§  paper made public in 1997 by the British Governmental 

Communications Headquarters 

§  Concept of digital signature is still originally due to Diffie 
& Hellman 



Public Key Encryption Algorithms 
§  Almost all public-key encryption 

algorithms use either number theory and 
modular arithmetic, or elliptic curves 

§  RSA 
§  based on the hardness of factoring large 

numbers 

§  El Gamal 
§  Based on the hardness of solving discrete 

logarithm 
§  Use the same idea as Diffie-Hellman key 

agreement 



RSA Cryptosystem 

§ Setup: 
§ n = pq, with p and q primes
§ e relatively prime to 
φ(n) = (p - 1) (q - 1)  

§ d inverse of e in Zφ(n) 
§ Keys: 

§ Public key: KE = (n, e) 
§ Private key: KD = d 

§ Encryption: 
§ Plaintext M in Zn 
§ C = Me mod n 

§ Decryption: 
§ M = Cd mod n 

§ Example 
n  Setup:  

w p = 7,  q = 17 
w n = 7⋅17 = 119 
w φ(n) = 6⋅16 = 96  
w e = 5 
w d = 77 

n  Keys: 
w public key: (119, 5) 
w private key: 77 

n  Encryption: 
w M = 19 
w C = 195 mod 119 = 66 

n  Decryption: 
w C = 6677 mod 119 = 19 



Complete RSA Example 
§ Setup:  

§ p = 5, q = 11 
§ n = 5⋅11 = 55 
§ φ(n) = 4⋅10 = 40  
§ e = 3 
§ d = 27 (3⋅27 = 81 = 2⋅40 + 1) 

M 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
C 1 8 27 9 15 51 13 17 14 10 11 23 52 49 20 26 18 2
M 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
C 39 25 21 33 12 19 5 31 48 7 24 50 36 43 22 34 30 16
M 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
C 53 37 29 35 6 3 32 44 45 41 38 42 4 40 46 28 47 54

•  Encryption 
n C = M3 mod 55 

• Decryption 
n M = C27 mod 55 



Questions 1 

§  In the previous example, why encrypting 
small messages, e.g., M=2,3,4 is tricky? 
§  Recall Enc(M) = M^3 mod 55 

§  Let 
N=20434394384355534343545428943483
434356091. Assume it is the product of 
two primes 
§  Can e be the number 4343253453434536? 

 



Questions 2 
§ Problem with RSA? 
§ Does it satisfy semantic security? 
 



Security of RSA 
§  Security of RSA based on 

difficulty of factoring 
§  Widely believed 
§  Best  known algorithm takes 

exponential time 

§  How can you break RSA if you 
can factor? 

§  In 1999, 512-bit challenge 
factored in 4 months using 
35.7 CPU-years 
§  160 175-400 MHz SGI and Sun 
§   8 250 MHz SGI Origin 
§  120 300-450 MHz Pentium II 
§   4 500 MHz Digital/Compaq 

§  In 2005, a team of researchers 
factored the RSA-640 challenge 
number using 30 2.2GHz CPU years 

§  In 2004, the prize for factoring 
RSA-2048 was $200,000 

§  Current practice is 2,048-bit keys 
§  Estimated resources needed to factor 

a number within one year  
§  Note that for RSA to be secure, both p 

and q must be large primes 

Length 
(bits) 

PCs Memory 

430 1 128MB 
760 215,000 4GB 

1,020 342×106 170GB 
1,620 1.6×1015 120TB 



Correctness 

§  We show the correctness of 
the RSA cryptosystem for the 
case when the plaintext M 
does not divide n 

§  Namely, we show that 
  (Me)d mod n = M 

§  Since ed mod φ(n) = 1, there is 
an integer k such that 

  ed = kφ(n) + 1 
§  Since M does not divide n, by 

Euler’s theorem we have 
Mφ(n) mod n = 1 

§  Thus, we obtain 
 (Me)d mod n = 
  Med mod n =

Mkφ(n) + 1 mod n =
MMkφ(n) mod n = 

  M (Mφ(n))k mod n =
  M (Mφ(n) mod n)k mod n =
  M (1)k mod n =
  M mod n =

M 
§  Proof of correctness can be 

extended to the case when 
the plaintext M divides n 



Algorithmic Issues 

§ The implementation of 
the RSA cryptosystem 
requires various 
algorithms 

§ Overall 
§ Representation of integers 
of arbitrarily large size and 
arithmetic operations on 
them 

§ Encryption 
§ Modular power 

§ Decryption 
§ Modular power 

§ Setup 
§ Generation of random 
numbers with a given 
number of bits (to generate 
candidates p and q) 
§ Primality testing (to check 
that candidates p and q are 
prime) 
§ Computation of the GCD (to 
verify that e and φ(n) are 
relatively prime) 
§ Computation of the 
multiplicative inverse (to 
compute d from e) 



Modular Power 
§  The repeated squaring 

algorithm speeds up the 
computation of a modular 
power ap mod n 

§  Write the exponent p in binary 
p = pb - 1 pb - 2 … p1 p0 

§  Start with 
Q1 = apb - 1 mod n 

§  Repeatedly compute 
Qi = ((Qi - 1)2 mod n)apb - i mod n 

§  We obtain 
Qb = ap mod n 

§  The repeated squaring 
algorithm performs O (log p) 
arithmetic operations 

§  Example 
§ 318 mod 19 (18 = 10010) 
§ Q1 = 31 mod 19 = 3 
§ Q2 = (32 mod 19)30 mod 19 = 9 
§ Q3 = (92 mod 19)30 mod 19 =  

 81 mod 19  = 5 
§ Q4 = (52 mod 19)31 mod 19 = 

 (25 mod 19)3 mod 19 = 
 18 mod 19 = 18 

§ Q5 = (182 mod 19)30 mod 19 =  
 (324 mod 19) mod 19 =  
 17⋅19 + 1 mod 19 = 1 

p5 - i 1 0 0 1 0 
2p5 - i 3 1 1 3 1 
Qi 3 9 5 18 1 



Chinese remainder theorem light 

§  Let N=pq. Let 
§  x mod p = a1 
§  x mod q = a2   

§  Then 
§  x mod N = a1* q * inverse(q in Zp)+ a2 * p * inverse(p in Zq) mod N 
§  Let’s prove it 
§  This can be used to compute W^x mod N, for big W^x, more efficiently 
§  How?  

§  Use of theorem 
§  Say you want to compute 18^25 mod 35 (35 = 5*7) 
§  Compute 18^25 mod 5 = 18^(25 mod 4) mod 5= 18^1 mod 5 = 3 = a1 
§  Compute 18^25 mod 7 = 18^(25 mod 6) mod 7= 18^1 mod 7 = 4 = a2 
§  Note that inverse(5 in Z7)=3 and inverse(7 in Z5)=3 
§  Therefore the solution we are looking for is 3*7*3+4*5*3 mod 35= 18 

§  Used in the decryption procedure of RSA: Why cannot it be used in the 
encryption? 

§  Also we can prove correctness of RSA for general message M 



Pseudoprimality Testing 
§  Testing whether a number is prime (primality testing) is a difficult 

problem, though polynomial-time algorithms exist 
§  An integer n ≥ 2  is said to be a base-x pseudoprime if  

§  xn - 1 mod n = 1 (Fermat’s little theorem) 

§  Composite base-x pseudoprimes are rare: 
§  A random 100-bit integer is a composite base-2 pseudoprime with 

probability less than 10-13 

§  The smallest composite base-2 pseudoprime is 341 
§  Base-x pseudoprimality testing for an integer n:  

§  Check whether xn - 1 mod n = 1  
§  Can be performed efficiently with the repeated squaring algorithm 



RSA security and properties 
 
§  Plain RSA is deterministic. 
§  Why is this a problem? 
§  Plain RSA is also homomorphic. What does this mean? 

§  Multiply ciphertexts to get ciphertext of multiplication! 
§   [(m1)e mod N][(m2)e mod N] = (m1m2)e mod N 

§  However, not additively homomorphic 
§  Both additively + multiplicative homomorphic (aka 

fully-homomorphic) encryption open problem till 2009 
§  A breakthrough result from IBM (Craig Gentry) 

answered this open problem, constructing such an 
encryption scheme 



Real World Usage of RSA 
§  Randomized RSA 

§  To encrypt a message M under an RSA public key (n,e), 
generate a new random session AES key K, compute the 
cipher text as 
§  [Ke mod N, AESK(M)] 

§  This prevents an adversary distinguishing two 
encryptions of the same message since K is chosen at 
random every time the encryption takes place 

§  Could the following encryption work for arbitrary 
messages M? 
§  (M||r)e mod N, for random r 



ElGamal Encryption 
§  Encrypts messages m ∈ Zp 
§  Secret key: random number a∈ Zp 
§  Public key: A = ga 
§  Encryption: Pick a random r ∈ Zp and set  

§  R = Ar = gar 

§  c1 = gr 

§  Then Enc(m) = (c1,c2) where c2=mR mod p 
§  Dec(c1,c2) = c2*(1/c1

a) mod p where c1
a= gar 

§  Security depends on Computational Diffie-Hellman 
(CDH) assumption:  given (g, ga,gb) it is hard to 
compute gab 

§  Do not use same r twice 


