ENEE 457: Computer Systems Security 09/28/16

Lecture 8 Introduction to Public Key Systems

Charalampos (Babis) Papamanthou

Department of Electrical and Computer Engineering University of Maryland, College Park

•Slides adjusted from:

http://dziembowski.net/Teaching/BISS09/

©2009 by Stefan Dziembowski. Permission to make digital or hard copies of part or all of this material is currently granted without fee *provided that copies are made only for personal or classroom use, are not distributed for profit or commercial advantage, and that new copies bear this notice and the full citation*.

How to distribute the cryptographic keys?

• If the users can meet in person beforehand – it's simple.

- But what to do if they **cannot meet**?
 - (a typical example: on-line shopping)

A naive solution:

give to every user P_i a separate key K_{ij} to communicate with every P_i

In general: a quadratic number of keys is needed

Problems:

- Someone (a **Key Distribution Center, KDC**) needs to "give the keys"
 - **feasible** if the users are e.g. working in one company
 - **infeasible** on the internet
 - relies on the honesty of **KDC**
 - **KDC** needs to be permanently available
 - •

. . .

• The users need to store large numbers of keys in a secure way

Plan

1. The problem of key distribution

- 2. The idea of Merkle, Diffie and Hellman
- 3. The solution of Rivest, Shamir and Adleman

The solution:

Public-Key Cryptography

Ralph Merkle (1974)

Whitfield Diffie and Martin Hellman (1976)

A little bit of history

• **Diffie and Hellman** were the first to publish a paper containing the idea of the public-key cryptography:

W.Diffie and M.E.Hellman, **New directions in cryptography** IEEE Trans. Inform. Theory, IT-22, 6, **1976**, pp.644-654.

- A similar idea was described by Ralph Merkle:
 - in 1974 he described it in a project proposal for a Computer Security course at UC Berkeley (it was rejected)
 - in 1975 he submitted it to the CACM journal (it was rejected) (see http://www.merkle.com/1974/)
- It 1997 the GCHQ (the British equivalent of the NSA) revealed that they new it already in 1973.

The idea

Instead of using one key K,

- use 2 keys (pk,sk), where
 - **pk** is used for **encryption**,
 - **sk** is used for **decryption**, or
 - sk is used for computing a tag,
 - pk is used for verifying correctness of the tag.

Moreover: pk can be public, and only **sk** has to be kept secret!

That's why it's called: public-key cryptography

this will be called "signatures"

Sign – the signing algorithm

Anyone can send encrypted messages to anyone else

Anyone can verify the signatures

Things that need to be discussed

- Who maintains "the register"?
- How to contact it securely?
- How to revoke the key (if it is lost)?

But is it possible?

In "physical world": yes! Examples:

- 1. "normal" signatures
- 2. padlocks:

Diffie and Hellman (1976)

- Diffie and Hellman proposed the public key cryptography in **1976**.
- They won the Turing award for that work in 2016 (Turing award is considered to be the Nobel Prize for Computer Science)
- They just proposed the **concept**, not the **implementation**.
- They have also shown a protocol for **key-exchange**.

The observation of Diffie and Hellman:

Plan

- 1. The problem of key distribution
- 2. The idea of Merkle, Diffie and Hellman
- 3. The solution of Rivest, Shamir and Adleman

Do such functions exist?

Yes: exponentiation modulo **N**, where **N** is a product of two large primes.

RSA function is (conjectured to be) a trapdoor permutation!

The RSA function

N = pq, such that p and q are primes, and |p| = |q| φ(N) = (p-1)(q-1).

e is such that $gcd(e, \phi(N)) = 1$ **d** is such that $ed = 1 \pmod{\phi(N)}$ pk := (N,e) sk := (N,d)

Enc_{pk}: $Z_N^* \rightarrow Z_N^*$ is defined as: Enc_{pk} (m) = m^e mod N. Dec_{sk}: $Z_N^* \rightarrow Z_N^*$ is defined as: Dec_{sk} (c) = c^d mod N.

An observation

From the previous lecture we know that

- Enc_{pk}: $Z_N^* \rightarrow Z_N^*$ is a permutation and
- **Dec**_{sk}: $Z_N^* \rightarrow Z_N^*$ is its inverse.

<u>Fact</u> Enc_{pk} is also a permutation over Z_N and Dec_{sk} is its inverse.

In fact, this doesn't even matter that much because:

if one finds an element $\mathbf{a} \in \mathbb{Z}_N \setminus \mathbb{Z}_N^*$ then one can factor N, because: $gcd(\mathbf{a}, \mathbf{N}) > 1.$

So, finding such an element is as hard as factoring N.

A proof of the fact from the previous slide

Suppose $x = 0 \mod p$. Then (trivially) $(x^e)^d = x \mod p$ On the other hand: $(x^e)^d = x^{ed} = x^1 \mod q$ $(x^e)^d = x \mod N$ because: $ed = 1 \mod (p-1)(q-1)$, and therefore $ed = 1 \mod (q-1)$

Is RSA secure?

Is **RSA** secure:

- 1. as an encryption scheme?
- 2. as a signature scheme?

The answer is not that simple.

First, we need to define security! We will do it on the next two lectures.

©2009 by Stefan Dziembowski. Permission to make digital or hard copies of part or all of this material is currently granted without fee *provided that copies are made only for personal or classroom use, are not distributed for profit or commercial advantage, and that new copies bear this notice and the full citation*.