
 
 

ENEE 459-C 
Computer Security 

Random number generation 
and intro to number theory 

 
 



Randomness is important! 

§  The keystream in the one-time pad 
§  The secret key used in ciphers 



Pseudo-random Number Generator 
§  Pseudo-random number generator:  

§  A polynomial-time computable function f (x) that expands a 
short random string x into a long string f (x) that appears 
random 

 
§  Not truly random in that:  

§  Deterministic algorithm 
§  Dependent on initial values 

§  Anyone who considers arithmetical methods of 
producing random digits is, of course, in a state of sin.” 
– John von Neumann 

§  Objectives  
§  Fast 
§  Secure       



Pseudo-random Number Generator 
§  Classical PRNGs 

§  Linear Congruential Generator 
 
§  Cryptographically Secure PRNGs 

§  Blum-Micali Generator 
 
       



Linear Congruential Generator - Algorithm 

§  Based on the linear recurrence: 
 xi =  a xi-1 + b  mod m   i≥1 
  
 Where 
  x0 is the seed or start value 
  a is the multiplier 
  b is the increment 
  m is the modulus 
  
 Output  
  (x1, x2, …, xk) 
  yi = xi mod 2 
  Y = (y1y2…yk)   ß  pseudo-random sequence of K bits 

       



Linear Congruential Generator - Example 

§  Let xn =  3 xn-1 + 5 mod 31  n≥1, and x0 = 2 
§  3 and 31 are relatively prime, one-to-one (affine cipher)  
§  31 is prime, order is 30 

§  Then we have the 30 residues in a cycle: 
§  2, 11, 7, 26, 21, 6, 23, 12, 10, 4, 17, 25, 18, 28, 27, 24, 15, 19, 0, 

5, 20, 3, 14, 16, 22, 9, 1, 8, 29, 30 

§  Pseudo-random sequences of 10 bits  
§  when x0 = 2 

  01101010001 
§  When x0 = 3 

  10001101001 



Linear Congruential Generator - Security 

§  Fast, but insecure 
§  Sensitive to the choice of parameters a, b, and m 
§  Serial correlation between successive values 
§  Short period, often m=232 or m=264 



Linear Congruential Generator - 
Application 

§  Used commonly in compilers 
§  Rand() 

§  Not suitable for high-quality randomness applications  
§  Not suitable for cryptographic applications  

§  Use cryptographically secure pseudo-random number generators 



Multiplicative group 
§  A set of elements where multiplication is 

defined 
§  It is a closed set 
§  Every element has an inverse 
§  Example: 

§  Z*_7 = {1,2,3,4,5,6} (mod 7) 
§  Z*_10 = {1,3,7,9} (mod 10) 

§  Find inverses 



Order of a multiplicative group 

§  Order of a group: Number of elements contained in the group 
§  What is the order of Z*p={1,2,…,p-1} 
§  The multiplicative group for Zn, denoted with Z*n, is the subset of 

elements of Zn relatively prime with n  
§  The totient function of n, denoted with φ(n), is the size of Z*n 

§  For a generator of a group g, it is: gφ(n)= 1 mod N 
§  Also all elements in the group can be written as g^i 
§  If N = pq (p and q are primes), φ(N) = (p-1)(q-1) 
§  Also, if p prime phi(p)=p-1 
§  Difficult problem: Given N, find p and q or φ(N)  
§  Example 

  Z*10  = { 1, 3, 7, 9 }   φ(10) = 4

§  If p is prime, we have 
  Z*p  = {1, 2, …, (p - 1)}  φ(p) = p - 1 



Fermat’s Little Theorem 

  
Theorem 

 Let p be a prime. For each nonzero x of Zp, we have xp 

- 1 mod p = 1 
§  Example (p = 5): 

14 mod 5 = 1   24 mod 5 = 16 mod 5 = 1 
34 mod 5 = 81 mod 5 = 1  44 mod 5 = 256 mod 5 = 1 

Corollary 
 Let p be a prime. For each nonzero residue x of Zp, the 
multiplicative inverse of x is xp - 2 mod p 

  Proof 
  x(xp - 2 mod p) mod p = xxp - 2 mod p = xp - 1 mod p = 1 



Euler’s Theorem 

Euler’s Theorem 
 For each element x of Z*n, we have xφ(n) mod n = 1 

§  Example (n = 10) 
 3φ(10) mod 10 = 34 mod 10 = 81 mod 10 = 1
7φ(10) mod 10 = 74 mod 10 = 2401 mod 10 = 1
9φ(10) mod 10 = 94 mod 10 = 6561 mod 10 = 1 



Computing in the exponent 
§  For the multiplicative group Z*n, we can compute in the exponent 

modulo φ(n) 
§  Corollary: For Z*p, we can compute in the exponent modulo p-1 
§  Example 

  Z*10  = { 1, 3, 7, 9 }  φ(10) = 4 
   3 ^ 1590 mod 10 = 3 ^ (1590 mod 4) mod 10 = 3^2 mod 10 = 9 

How about 2^8 mod 10?
§  Example for p=19 

  Z*p  = {1, 2, …, (p - 1)}  φ(p) = p - 1 
                               15^39 mod 19 = 15^(39 mod 18) mod 19 = 15^3 mod 19= 12 



Cryptographically Secure  

§  Passing the next-bit test 
§  Given the first k bits of a string generated by PRBG, there is no 

polynomial-time algorithm that can correctly predict the next (k
+1)th bit with probability significantly greater than ½ 

§  Next-bit unpredictable   



Blum-Micali Generator - Security 

§  Blum-Micali Generator is provably secure 
§  It is difficult to predict the next bit in the sequence given the 

previous bits, assuming it is difficult to invert the discrete logarithm 
function (by reduction) 



Blum-Micali Generator - Concept 
§  Discrete logarithm 

§  Let p be an odd prime, then (Zp
*, ·) is a cyclic group with 

order p-1 
§  Let g be a generator of the group, then |<g>| = p-1, and for 

any element a in the group , we have gk = a mod p for some 
integer k 

§  If we know k, it is easy to compute a 
§  However, the inverse is hard to compute, that is, if we know a, 

it is hard to compute k = logg a 

§  Example 
§  (Z17

*, ·) is a cyclic group with order 16, 3 is the generator of 
the group and 316 = 1 mod 17 

§  Let k=4, 34 = 13 mod 17, which is easy to compute 
§  The inverse: 3k = 13 mod 17, what is k? what about large p? 



Blum-Micali Generator - Algorithm 
§  Based on the discrete logarithm one-way function: 

§  Let p be an odd prime, then (Zp
*, ·) is a cyclic group 

§  Let g be a generator of the group, then for any element a, we 
have gk = a mod p for some k 

§  Let x0 be a seed  

 xi = gxi-1 mod p   i≥1 
 

 Output 
  (x1, x2, …, xk)   

  yi = 1  if xi ≥ (p-1)/2 
  yi = 0  otherwise  
  Y = (y1y2…yk)     ß pseudo-random sequence of K bits 



Euclid’s GCD Algorithm 

§  Euclid’s algorithm for 
computing the GCD 
repeatedly applies the 
formula 

 gcd(a, b) = gcd(b, a mod b) 
§  Example 

§ gcd(412, 260) = 4 

a 412 260 152 108 44 20 4 

b 260 152 108 44 20 4 0 

Algorithm EuclidGCD(a, b) 
 Input integers a and b 
 Output gcd(a, b) 

 
 if b = 0 
  return a 
 else 
  return EuclidGCD(b, a mod b) 



Proof of correctness 

§  We need to prove that GCD(a,b)=GCD(b,a mod b) 
§  FACTS 

§  Every divisor of a and b is a divisor of b and (a mod b): This is because (a mod b) 
can be written as the sum of a and a multiple of b, i.e., a mod b = a + kb, for some 
integer k. 

§  Similarly, every divisor of b and (a mod b) is a divisor of a and b: This is because a 
can be written as the sum of (a mod b) and a multiple of b, i.e., a = kb + (a mod b), 
for some integer k. 

§  Therefore the set of all divisors of a and b is the same with the set of all divisors of 
b and (a mod b). Thus the greatest should also be the same.  

Algorithm EuclidGCD(a, b) 
 Input integers a and b 
 Output gcd(a, b) 

 
 if b = 0 
  return a 
 else 
  return EuclidGCD(b, a mod b) 



Multiplicative Inverses (1) 
§  The residues modulo a positive integer n are the set 

  Zn = {0, 1, 2, …, (n - 1)}  
§  Let x and y be two elements of Zn such that 

  xy mod n = 1 
 We say that y  is the multiplicative inverse of x in Zn 
and we write y = x-1 

§  Example: 
§  Multiplicative inverses of the residues modulo 11 

x 0 1 2 3 4 5 6 7 8 9 10 
x-1 1 6 4 3 9 2 8 7 5 10 



Multiplicative Inverses (2) 
Theorem 

 An element x of Zn has a multiplicative inverse if and only if x and 
n are relatively prime 

§  Example 
§  The elements of Z10 with a multiplicative inverse are 1, 3, 7, 9 

Corollary 
 If is p is prime, every nonzero residue in Zp has a multiplicative 
inverse 

Theorem 
 A variation of Euclid’s GCD algorithm computes the multiplicative 
inverse of an element x of Zn or determines that it does not exist 

x 0 1 2 3 4 5 6 7 8 9 
x-1 1 7 3 9 



Extended Euclidean algorithm 

Theorem 
 Given positive integers a and b, let d be the 
smallest positive integer such that 
   d = ia + jb 
 for some integers i and j. 
 We have  
   d = gcd(a,b) 

§  Example 
§  a = 21 
§  b = 15 
§  d = 3 
§  i = 3, j = -4 
§  3 = 3⋅21 + (-4)⋅15 = 

   63 - 60 = 3 

Algorithm Extended-Euclid(a, b) 
 Input integers a and b 
 Output gcd(a, b), i and j  

                 such that ia+jb = gcd(a,b) 
 if b = 0 
  return (a,1,0) 
 (d′, x′, y′) =  Extended-Euclid(b, a mod b) 

    (d, x, y) = (d′, y′, x′ - [a/b]y′)  
    return (d, x, y)  



Computing multiplicative inverses 
§  Compute the multiplicative inverse of a in Zb 

§  Given two numbers a and b, there exist integers x and y such that 
§  xa + yb = gcd(a,b)  

§  Can be computed efficiently with the Extended Euclidean algorithm 
§  To compute the multiplicative inverse of a in Zb ,use the Extended 

Euclidean algorithm to compute x and y such that xa + yb = 1 

§  Then x the multiplicative inverse of a in Zb 



Powers 
§  Let p be a prime 
§  The sequences of successive powers of the elements of Zp exhibit 

repeating subsequences  
§  The sizes of the repeating subsequences and the number of their 

repetitions are the divisors of p - 1 
§  Example (p = 7) 

x x2 x3 x4 x5 x6 

1 1 1 1 1 1 
2 4 1 2 4 1 
3 2 6 4 5 1 
4 2 1 4 2 1 
5 4 6 2 3 1 
6 1 6 1 6 1 



Review of Secret Key 
(Symmetric) Cryptography  
§  Confidentiality 

§  block ciphers with encryption modes 
§  Integrity 

§ Message authentication code (keyed hash 
functions) 

§  Limitation: sender and receiver must 
share the same key 
§  Needs secure channel for key distribution 
§  Impossible for two parties having no prior 

relationship 
§  Needs many keys for n parties to 

communicate 



Concept of Public Key Encryption 
§  Each party has a pair (K, K-1) of keys:  

§  K is the public key, and used for encryption 
§  K-1 is the private key, and used for decryption 
§  Satisfies    DK-1[EK[M]] = M 

§  Knowing the public-key K, it is computationally infeasible 
to compute the private key K-1 
§  Easy to check K,K-1 is a pair 

§  The public-key K may be made publicly available, e.g., in 
a publicly available directory 
§  Many can encrypt, only one can decrypt 

§  Public-key systems aka asymmetric crypto systems 



Public Key Cryptography Early 
History 
§  Proposed by Diffie and Hellman, documented in “New 

Directions in Cryptography” (1976)  
1.  Public-key encryption schemes 
2.  Key distribution systems 

§  Diffie-Hellman key agreement protocol 
3.  Digital signature 

§  Public-key encryption was proposed in 1970 in a 
classified paper by James Ellis 
§  paper made public in 1997 by the British Governmental 

Communications Headquarters 

§  Concept of digital signature is still originally due to Diffie 
& Hellman 



Public Key Encryption Algorithms 
§  Almost all public-key encryption 

algorithms use either number theory and 
modular arithmetic, or elliptic curves 

§  RSA 
§  based on the hardness of factoring large 

numbers 

§  El Gamal 
§  Based on the hardness of solving discrete 

logarithm 
§  Use the same idea as Diffie-Hellman key 

agreement 


