ENEE 459-C Computer Security

Random number generation and intro to number theory

Randomness is important!

- The keystream in the one-time pad
- The secret key used in ciphers

Pseudo-random Number Generator

- Pseudo-random number generator:
 - A polynomial-time computable function f (x) that expands a short random string x into a long string f (x) that appears random
- Not truly random in that:
 - Deterministic algorithm
 - Dependent on initial values
- Anyone who considers arithmetical methods of producing random digits is, of course, in a state of sin."
 - John von Neumann
- Objectives
 - Fast
 - Secure

Pseudo-random Number Generator

- Classical PRNGs
 - Linear Congruential Generator
- Cryptographically Secure PRNGs
 - Blum-Micali Generator

Linear Congruential Generator - Algorithm

Based on the linear recurrence:

$$x_i = a x_{i-1} + b \mod m$$
 $i \ge 1$

Where

x₀ is the seed or start valuea is the multiplierb is the incrementm is the modulus

Output

$$(x_1, x_2, ..., x_k)$$

 $y_i = x_i \mod 2$
 $Y = (y_1 y_2 ... y_k) \leftarrow \text{pseudo-random sequence of K bits}$

Linear Congruential Generator - Example

- Let $x_n = 3 x_{n-1} + 5 \mod 31$ n≥1, and $x_0 = 2$
 - 3 and 31 are relatively prime, one-to-one (affine cipher)
 - 31 is prime, order is 30
- Then we have the 30 residues in a cycle:
 - 2, 11, 7, 26, 21, 6, 23, 12, 10, 4, 17, 25, 18, 28, 27, 24, 15, 19, 0, 5, 20, 3, 14, 16, 22, 9, 1, 8, 29, 30
- Pseudo-random sequences of 10 bits
 - when $x_0 = 2$ 01101010001
 - When $x_0 = 3$ 10001101001

Linear Congruential Generator - Security

- Fast, but insecure
 - Sensitive to the choice of parameters a, b, and m
 - Serial correlation between successive values
 - Short period, often m=2³² or m=2⁶⁴

Linear Congruential Generator - Application

- Used commonly in compilers
 - Rand()
- Not suitable for high-quality randomness applications
- Not suitable for cryptographic applications
 - Use cryptographically secure pseudo-random number generators

Multiplicative group

- A set of elements where multiplication is defined
- It is a closed set
- Every element has an inverse
- Example:
 - $Z*_7 = \{1,2,3,4,5,6\} \pmod{7}$
 - $Z*_10 = \{1,3,7,9\} \pmod{10}$
- Find inverses

Order of a multiplicative group

- Order of a group: Number of elements contained in the group
- What is the order of Z*p={1,2,...,p-1}
- The multiplicative group for Z_n , denoted with Z^*_n , is the subset of elements of Z_n relatively prime with n
- The totient function of n, denoted with $\phi(n)$, is the size of Z^*_n
- For a generator of a group g, it is: $g^{\phi(n)} = 1 \mod N$
- Also all elements in the group can be written as gⁱ
- If N = pq (p and q are primes), $\varphi(N) = (p-1)(q-1)$
- Also, if p prime phi(p)=p-1
- Difficult problem: Given N, find p and q or $\varphi(N)$
- Example

$$Z^*_{10} = \{1, 3, 7, 9\}$$
 $\phi(10) = 4$

• If p is prime, we have

$$Z_p^* = \{1, 2, ..., (p-1)\}$$
 $\phi(p) = p-1$

Fermat's Little Theorem

Theorem

Let p be a prime. For each nonzero x of \mathbb{Z}_p , we have $x^p - 1 \mod p = 1$

• Example (p = 5):

```
1^4 \mod 5 = 1 2^4 \mod 5 = 16 \mod 5 = 1 3^4 \mod 5 = 81 \mod 5 = 1 4^4 \mod 5 = 256 \mod 5 = 1
```

Corollary

Let p be a prime. For each nonzero residue x of Z_p , the multiplicative inverse of x is $x^{p-2} \mod p$

Proof

$$x(x^{p-2} \mod p) \mod p = xx^{p-2} \mod p = x^{p-1} \mod p = 1$$

Euler's Theorem

Euler's Theorem

For each element x of $Z^*_{n'}$ we have $x^{\phi(n)} \mod n = 1$

• Example (n = 10)

```
3^{\phi(10)} \mod 10 = 3^4 \mod 10 = 81 \mod 10 = 1
7^{\phi(10)} \mod 10 = 7^4 \mod 10 = 2401 \mod 10 = 1
9^{\phi(10)} \mod 10 = 9^4 \mod 10 = 6561 \mod 10 = 1
```

Computing in the exponent

- For the multiplicative group $Z^*_{n'}$ we can compute in the exponent modulo $\phi(n)$
- Corollary: For Z^*_{p} , we can compute in the exponent modulo **p-1**
- Example

$$Z^*_{10} = \{ 1, 3, 7, 9 \}$$
 $\phi(10) = 4$
 $3 \land 1590 \mod 10 = 3 \land (1590 \mod 4) \mod 10 = 3 \land 2 \mod 10 = 9$

How about 2⁸ mod 10?

Example for p=19

$$Z^*_p = \{1, 2, ..., (p-1)\}$$
 $\phi(p) = p-1$
15^39 mod 19 = 15^(39 mod 18) mod 19 = 15^3 mod 19=12

Cryptographically Secure

- Passing the next-bit test
 - Given the first k bits of a string generated by PRBG, there is no polynomial-time algorithm that can correctly predict the next (k +1)th bit with probability significantly greater than ½
 - Next-bit unpredictable

Blum-Micali Generator - Security

- Blum-Micali Generator is provably secure
 - It is difficult to predict the next bit in the sequence given the previous bits, assuming it is difficult to invert the discrete logarithm function (by reduction)

Blum-Micali Generator - Concept

Discrete logarithm

- Let p be an odd prime, then (Z_p*, ·) is a cyclic group with order p-1
- Let g be a generator of the group, then |<g>| = p-1, and for any element a in the group, we have g^k = a mod p for some integer k
- If we know k, it is easy to compute a
- However, the inverse is hard to compute, that is, if we know a, it is hard to compute $k = \log_a a$

Example

- (Z_{17}^*, \cdot) is a cyclic group with order 16, 3 is the generator of the group and $3^{16} = 1 \mod 17$
- Let k=4, $3^4=13 \mod 17$, which is easy to compute
- The inverse: $3^k = 13 \mod 17$, what is k? what about large p?

Blum-Micali Generator - Algorithm

- Based on the discrete logarithm one-way function:
 - Let p be an odd prime, then (Z_p*, ·) is a cyclic group
 - Let g be a generator of the group, then for any element a, we have g^k = a mod p for some k
 - Let x₀ be a seed

$$x_i = g^{x_{i-1}} \mod p$$
 $i \ge 1$

Output

```
(x_1, x_2, ..., x_k)

y_i = 1 if x_i \ge (p-1)/2

y_i = 0 otherwise

Y = (y_1y_2...y_k) \leftarrow pseudo-random sequence of K bits
```

Euclid's GCD Algorithm

 Euclid's algorithm for computing the GCD repeatedly applies the formula

```
gcd(a, b) = gcd(b, a \mod b)
```

- Example
 - $\gcd(412, 260) = 4$

```
Algorithm EuclidGCD(a, b)
Input integers a and b
Output gcd(a, b)

if b = 0
return a
else
return EuclidGCD(b, a mod b)
```

a	412	260	152	108	44	20	4
b	260	152	108	44	20	4	0

Proof of correctness

```
Algorithm EuclidGCD(a, b)
Input integers a and b
Output gcd(a, b)

if b = 0
return a
else
return EuclidGCD(b, a mod b)
```

- We need to prove that $GCD(a,b)=GCD(b,a \mod b)$
- FACTS
 - Every divisor of a and b is a divisor of b and (a mod b): This is because (a mod b) can be written as the sum of a and a multiple of b, i.e., a mod b = a + kb, for some integer k.
 - Similarly, every divisor of **b** and (**a** mod **b**) is a divisor of **a** and **b**: This is because **a** can be written as the sum of (**a** mod **b**) and a multiple of **b**, i.e., **a** = k**b** + (**a** mod **b**), for some integer k.
 - Therefore the set of all divisors of a and b is the same with the set of all divisors of b and (a mod b). Thus the greatest should also be the same.

Multiplicative Inverses (1)

The residues modulo a positive integer n are the set $Z_n = \{0, 1, 2, ..., (n-1)\}$

Let x and y be two elements of Z_n such that $xy \mod n = 1$

We say that y is the multiplicative inverse of x in Z_n and we write $y = x^{-1}$

- Example:
 - Multiplicative inverses of the residues modulo 11

										10
x^{-1}	1	6	4	3	9	2	8	7	5	10

Multiplicative Inverses (2)

Theorem

An element x of Z_n has a multiplicative inverse if and only if x and n are relatively prime

- Example
 - The elements of Z_{10} with a multiplicative inverse are 1, 3, 7, 9

Corollary

If is p is prime, every nonzero residue in \mathbb{Z}_p has a multiplicative inverse

Theorem

A variation of Euclid's GCD algorithm computes the multiplicative inverse of an element x of Z_n or determines that it does not exist

x	0	1	2	3	4	5	6	7	8	9
x^{-1}		1		7				3		9

Extended Euclidean algorithm

Theorem

Given positive integers a and b, let d be the smallest positive integer such that

$$d = ia + jb$$

for some integers i and j.

We have

$$d = \gcd(a,b)$$

- Example
 - a = 21
 - b = 15
 - d = 3
 - i = 3, j = -4
 - 3 = 3.21 + (-4).15 = 63 60 = 3

```
Algorithm Extended-Euclid(a, b)
Input integers a and b
Output gcd(a, b), i and j
such that ia+jb = gcd(a,b)
if b = 0
return (a,1,0)
(d', x', y') = Extended-Euclid(b, a mod b)
(d, x, y) = (d', y', x' - [a/b]y')
return (d, x, y)
```

Computing multiplicative inverses

- Compute the multiplicative inverse of a in Z_b
- Given two numbers a and b, there exist integers x and y such that
 xa + yb = gcd(a,b)
- Can be computed efficiently with the Extended Euclidean algorithm
- To compute the multiplicative inverse of a in Z_b , use the Extended Euclidean algorithm to compute x and y such that xa + yb = 1
- Then x the multiplicative inverse of a in Z_h

Powers

- Let p be a prime
- The sequences of successive powers of the elements of \mathbb{Z}_p exhibit repeating subsequences
- The sizes of the repeating subsequences and the number of their repetitions are the divisors of p-1
- Example (p = 7)

X	x^2	x^3	x^4	x^5	x^6
1	1	1	1	1	1
2	4	1	2	4	1
3	2	6	4	5	1
4	2	1	4	2	1
5	4	6	2	3	1
6	1	6	1	6	1

Review of Secret Key (Symmetric) Cryptography

- Confidentiality
 - block ciphers with encryption modes
- Integrity
 - Message authentication code (keyed hash functions)
- Limitation: sender and receiver must share the same key
 - Needs secure channel for key distribution
 - Impossible for two parties having no prior relationship
 - Needs many keys for n parties to communicate

Concept of Public Key Encryption

- Each party has a pair (K, K⁻¹) of keys:
 - K is the public key, and used for encryption
 - K⁻¹ is the **private** key, and used for decryption
 - Satisfies $\mathbf{D}_{K^{-1}}[\mathbf{E}_K[M]] = M$
- Knowing the public-key K, it is computationally infeasible to compute the private key K⁻¹
 - Easy to check K,K⁻¹ is a pair
- The public-key K may be made publicly available, e.g., in a publicly available directory
 - Many can encrypt, only one can decrypt
- Public-key systems aka asymmetric crypto systems

Public Key Cryptography Early History

- Proposed by Diffie and Hellman, documented in "New Directions in Cryptography" (1976)
 - 1. Public-key encryption schemes
 - 2. Key distribution systems
 - Diffie-Hellman key agreement protocol
 - 3. Digital signature
- Public-key encryption was proposed in 1970 in a classified paper by James Ellis
 - paper made public in 1997 by the British Governmental Communications Headquarters
- Concept of digital signature is still originally due to Diffie
 & Hellman

Public Key Encryption Algorithms

- Almost all public-key encryption algorithms use either number theory and modular arithmetic, or elliptic curves
- RSA
 - based on the hardness of factoring large numbers
- El Gamal
 - Based on the hardness of solving discrete logarithm
 - Use the same idea as Diffie-Hellman key agreement