

ENEE 459-C
Computer Security

Random number generation
and intro to number theory

Randomness is important!

§  The keystream in the one-time pad
§  The secret key used in ciphers

Pseudo-random Number Generator
§  Pseudo-random number generator:

§  A polynomial-time computable function f (x) that expands a
short random string x into a long string f (x) that appears
random

§  Not truly random in that:

§  Deterministic algorithm
§  Dependent on initial values

§  Anyone who considers arithmetical methods of
producing random digits is, of course, in a state of sin.”
– John von Neumann

§  Objectives
§  Fast
§  Secure

Pseudo-random Number Generator
§  Classical PRNGs

§  Linear Congruential Generator

§  Cryptographically Secure PRNGs

§  Blum-Micali Generator

Linear Congruential Generator - Algorithm

§  Based on the linear recurrence:
 xi = a xi-1 + b mod m i≥1

 Where
 x0 is the seed or start value
 a is the multiplier
 b is the increment
 m is the modulus

 Output
 (x1, x2, …, xk)
 yi = xi mod 2
 Y = (y1y2…yk) ß pseudo-random sequence of K bits

Linear Congruential Generator - Example

§  Let xn = 3 xn-1 + 5 mod 31 n≥1, and x0 = 2
§  3 and 31 are relatively prime, one-to-one (affine cipher)
§  31 is prime, order is 30

§  Then we have the 30 residues in a cycle:
§  2, 11, 7, 26, 21, 6, 23, 12, 10, 4, 17, 25, 18, 28, 27, 24, 15, 19, 0,

5, 20, 3, 14, 16, 22, 9, 1, 8, 29, 30

§  Pseudo-random sequences of 10 bits
§  when x0 = 2

 01101010001
§  When x0 = 3

 10001101001

Linear Congruential Generator - Security

§  Fast, but insecure
§  Sensitive to the choice of parameters a, b, and m
§  Serial correlation between successive values
§  Short period, often m=232 or m=264

Linear Congruential Generator -
Application

§  Used commonly in compilers
§  Rand()

§  Not suitable for high-quality randomness applications
§  Not suitable for cryptographic applications

§  Use cryptographically secure pseudo-random number generators

Multiplicative group
§  A set of elements where multiplication is

defined
§  It is a closed set
§  Every element has an inverse
§  Example:

§  Z*_7 = {1,2,3,4,5,6} (mod 7)
§  Z*_10 = {1,3,7,9} (mod 10)

§  Find inverses

Order of a multiplicative group

§  Order of a group: Number of elements contained in the group
§  What is the order of Z*p={1,2,…,p-1}
§  The multiplicative group for Zn, denoted with Z*n, is the subset of

elements of Zn relatively prime with n
§  The totient function of n, denoted with φ(n), is the size of Z*n

§  For a generator of a group g, it is: gφ(n)= 1 mod N
§  Also all elements in the group can be written as g^i
§  If N = pq (p and q are primes), φ(N) = (p-1)(q-1)
§  Also, if p prime phi(p)=p-1
§  Difficult problem: Given N, find p and q or φ(N)
§  Example

 Z*10 = { 1, 3, 7, 9 } φ(10) = 4

§  If p is prime, we have
 Z*p = {1, 2, …, (p - 1)} φ(p) = p - 1

Fermat’s Little Theorem

Theorem

 Let p be a prime. For each nonzero x of Zp, we have xp

- 1 mod p = 1
§  Example (p = 5):

14 mod 5 = 1 24 mod 5 = 16 mod 5 = 1
34 mod 5 = 81 mod 5 = 1 44 mod 5 = 256 mod 5 = 1

Corollary
 Let p be a prime. For each nonzero residue x of Zp, the
multiplicative inverse of x is xp - 2 mod p

 Proof
 x(xp - 2 mod p) mod p = xxp - 2 mod p = xp - 1 mod p = 1

Euler’s Theorem

Euler’s Theorem
 For each element x of Z*n, we have xφ(n) mod n = 1

§  Example (n = 10)
 3φ(10) mod 10 = 34 mod 10 = 81 mod 10 = 1
7φ(10) mod 10 = 74 mod 10 = 2401 mod 10 = 1
9φ(10) mod 10 = 94 mod 10 = 6561 mod 10 = 1

Computing in the exponent
§  For the multiplicative group Z*n, we can compute in the exponent

modulo φ(n)
§  Corollary: For Z*p, we can compute in the exponent modulo p-1
§  Example

 Z*10 = { 1, 3, 7, 9 } φ(10) = 4
 3 ^ 1590 mod 10 = 3 ^ (1590 mod 4) mod 10 = 3^2 mod 10 = 9

How about 2^8 mod 10?
§  Example for p=19

 Z*p = {1, 2, …, (p - 1)} φ(p) = p - 1
 15^39 mod 19 = 15^(39 mod 18) mod 19 = 15^3 mod 19= 12

Cryptographically Secure

§  Passing the next-bit test
§  Given the first k bits of a string generated by PRBG, there is no

polynomial-time algorithm that can correctly predict the next (k
+1)th bit with probability significantly greater than ½

§  Next-bit unpredictable

Blum-Micali Generator - Security

§  Blum-Micali Generator is provably secure
§  It is difficult to predict the next bit in the sequence given the

previous bits, assuming it is difficult to invert the discrete logarithm
function (by reduction)

Blum-Micali Generator - Concept
§  Discrete logarithm

§  Let p be an odd prime, then (Zp
*, ·) is a cyclic group with

order p-1
§  Let g be a generator of the group, then |<g>| = p-1, and for

any element a in the group , we have gk = a mod p for some
integer k

§  If we know k, it is easy to compute a
§  However, the inverse is hard to compute, that is, if we know a,

it is hard to compute k = logg a

§  Example
§  (Z17

*, ·) is a cyclic group with order 16, 3 is the generator of
the group and 316 = 1 mod 17

§  Let k=4, 34 = 13 mod 17, which is easy to compute
§  The inverse: 3k = 13 mod 17, what is k? what about large p?

Blum-Micali Generator - Algorithm
§  Based on the discrete logarithm one-way function:

§  Let p be an odd prime, then (Zp
*, ·) is a cyclic group

§  Let g be a generator of the group, then for any element a, we
have gk = a mod p for some k

§  Let x0 be a seed

 xi = gxi-1 mod p i≥1

 Output
 (x1, x2, …, xk)

 yi = 1 if xi ≥ (p-1)/2
 yi = 0 otherwise
 Y = (y1y2…yk) ß pseudo-random sequence of K bits

Euclid’s GCD Algorithm

§  Euclid’s algorithm for
computing the GCD
repeatedly applies the
formula

 gcd(a, b) = gcd(b, a mod b)
§  Example

§ gcd(412, 260) = 4

a 412 260 152 108 44 20 4

b 260 152 108 44 20 4 0

Algorithm EuclidGCD(a, b)
 Input integers a and b
 Output gcd(a, b)

 if b = 0
 return a
 else
 return EuclidGCD(b, a mod b)

Proof of correctness

§  We need to prove that GCD(a,b)=GCD(b,a mod b)
§  FACTS

§  Every divisor of a and b is a divisor of b and (a mod b): This is because (a mod b)
can be written as the sum of a and a multiple of b, i.e., a mod b = a + kb, for some
integer k.

§  Similarly, every divisor of b and (a mod b) is a divisor of a and b: This is because a
can be written as the sum of (a mod b) and a multiple of b, i.e., a = kb + (a mod b),
for some integer k.

§  Therefore the set of all divisors of a and b is the same with the set of all divisors of
b and (a mod b). Thus the greatest should also be the same.

Algorithm EuclidGCD(a, b)
 Input integers a and b
 Output gcd(a, b)

 if b = 0
 return a
 else
 return EuclidGCD(b, a mod b)

Multiplicative Inverses (1)
§  The residues modulo a positive integer n are the set

 Zn = {0, 1, 2, …, (n - 1)}
§  Let x and y be two elements of Zn such that

 xy mod n = 1
 We say that y is the multiplicative inverse of x in Zn
and we write y = x-1

§  Example:
§  Multiplicative inverses of the residues modulo 11

x 0 1 2 3 4 5 6 7 8 9 10
x-1 1 6 4 3 9 2 8 7 5 10

Multiplicative Inverses (2)
Theorem

 An element x of Zn has a multiplicative inverse if and only if x and
n are relatively prime

§  Example
§  The elements of Z10 with a multiplicative inverse are 1, 3, 7, 9

Corollary
 If is p is prime, every nonzero residue in Zp has a multiplicative
inverse

Theorem
 A variation of Euclid’s GCD algorithm computes the multiplicative
inverse of an element x of Zn or determines that it does not exist

x 0 1 2 3 4 5 6 7 8 9
x-1 1 7 3 9

Extended Euclidean algorithm

Theorem
 Given positive integers a and b, let d be the
smallest positive integer such that
 d = ia + jb
 for some integers i and j.
 We have
 d = gcd(a,b)

§  Example
§  a = 21
§  b = 15
§  d = 3
§  i = 3, j = -4
§  3 = 3⋅21 + (-4)⋅15 =

 63 - 60 = 3

Algorithm Extended-Euclid(a, b)
 Input integers a and b
 Output gcd(a, b), i and j

 such that ia+jb = gcd(a,b)
 if b = 0
 return (a,1,0)
 (d′, x′, y′) = Extended-Euclid(b, a mod b)

 (d, x, y) = (d′, y′, x′ - [a/b]y′)
 return (d, x, y)

Computing multiplicative inverses
§  Compute the multiplicative inverse of a in Zb

§  Given two numbers a and b, there exist integers x and y such that
§  xa + yb = gcd(a,b)

§  Can be computed efficiently with the Extended Euclidean algorithm
§  To compute the multiplicative inverse of a in Zb ,use the Extended

Euclidean algorithm to compute x and y such that xa + yb = 1

§  Then x the multiplicative inverse of a in Zb

Powers
§  Let p be a prime
§  The sequences of successive powers of the elements of Zp exhibit

repeating subsequences
§  The sizes of the repeating subsequences and the number of their

repetitions are the divisors of p - 1
§  Example (p = 7)

x x2 x3 x4 x5 x6

1 1 1 1 1 1
2 4 1 2 4 1
3 2 6 4 5 1
4 2 1 4 2 1
5 4 6 2 3 1
6 1 6 1 6 1

Review of Secret Key
(Symmetric) Cryptography
§  Confidentiality

§  block ciphers with encryption modes
§  Integrity

§ Message authentication code (keyed hash
functions)

§  Limitation: sender and receiver must
share the same key
§  Needs secure channel for key distribution
§  Impossible for two parties having no prior

relationship
§  Needs many keys for n parties to

communicate

Concept of Public Key Encryption
§  Each party has a pair (K, K-1) of keys:

§  K is the public key, and used for encryption
§  K-1 is the private key, and used for decryption
§  Satisfies DK-1[EK[M]] = M

§  Knowing the public-key K, it is computationally infeasible
to compute the private key K-1
§  Easy to check K,K-1 is a pair

§  The public-key K may be made publicly available, e.g., in
a publicly available directory
§  Many can encrypt, only one can decrypt

§  Public-key systems aka asymmetric crypto systems

Public Key Cryptography Early
History
§  Proposed by Diffie and Hellman, documented in “New

Directions in Cryptography” (1976)
1.  Public-key encryption schemes
2.  Key distribution systems

§  Diffie-Hellman key agreement protocol
3.  Digital signature

§  Public-key encryption was proposed in 1970 in a
classified paper by James Ellis
§  paper made public in 1997 by the British Governmental

Communications Headquarters

§  Concept of digital signature is still originally due to Diffie
& Hellman

Public Key Encryption Algorithms
§  Almost all public-key encryption

algorithms use either number theory and
modular arithmetic, or elliptic curves

§  RSA
§  based on the hardness of factoring large

numbers

§  El Gamal
§  Based on the hardness of solving discrete

logarithm
§  Use the same idea as Diffie-Hellman key

agreement

