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Computer Security

RSA and ElGamal encryption



Last lecture

 Euclidean algorithm

 Multiplicative inverses



Order of a group

 Order of a group: Number of elements contained in the 
group

 What is the order of Z*p={1,2,…,p-1}

 The multiplicative group for Zn, denoted with Z*n, is the subset of 
elements of Zn relatively prime with n

 The totient function of n, denoted with f(n), is the size of Z*n

 For a generator of a group g, it is: gf(n)= 1 mod N

 If N = pq (p and q are primes), φ(N) = (p-1)(q-1)

 Difficult problem: Given N, find p and q or φ(N) 

 Example

Z*10 = { 1, 3, 7, 9 } f(10) = 4

 If p is prime, we have

Z*p = {1, 2, …, (p - 1)} f(p) = p  1



Fermat’s Little Theorem

Theorem

Let p be a prime. For each nonzero x of Zp, we have xp

- 1 mod p = 1

 Example (p = 5):
14 mod 5 = 1 24 mod 5 = 16 mod 5 = 1

34 mod 5 = 81 mod 5 = 1 44 mod 5 = 256 mod 5 = 1

Corollary

Let p be a prime. For each nonzero residue x of Zp, the 
multiplicative inverse of x is xp - 2 mod p

Proof

x(xp - 2 mod p) mod p = xxp - 2 mod p = xp - 1 mod p = 1



Euler’s Theorem

Euler’s Theorem

For each element x of Z*n, we have xf(n) mod n = 1

 Example (n = 10)

3f(10) mod 10 = 34 mod 10 = 81 mod 10 = 1

7f(10) mod 10 = 74 mod 10 = 2401 mod 10 = 1

9f(10) mod 10 = 94 mod 10 = 6561 mod 10 = 1



Computing in the exponent
 For the multiplicative group Z*n, we can compute in the exponent 

modulo f(n)

 Corollary: For Z*p, we can compute in the exponent modulo p-1

 Example

Z*10 = { 1, 3, 7, 9 } f(10) = 4

3 ^ 1590 mod 10 = 3 ^ (1590 mod 4) mod 10 = 3^2 mod 10 = 9

How about 2^8 mod 10?

 Example for p=19

Z*p = {1, 2, …, (p - 1)} f(p) = p - 1

15^39 mod 19 = 15^(39 mod 18) mod 19 = 15^3 mod 19= 12



RSA Cryptosystem

 Setup:
 n = pq, with p and q primes
 e relatively prime to

f(n) = (p - 1) (q - 1)

 d inverse of e in Zf(n)

 Keys:
 Public key: KE = (n, e)

 Private key: KD = d

 Encryption:
 Plaintext M in Zn

 C = Me mod n

 Decryption:
 M = Cd mod n

Example
 Setup: 

 p = 7,  q = 17

 n = 717 = 119

 f(n) = 616 = 96 

 e = 5

 d = 77

 Keys:
 public key: (119, 5)

 private key: 77

 Encryption:
 M = 19

 C = 195 mod 119 = 66

 Decryption:
 C = 6677 mod 119 = 19



Complete RSA Example
 Setup: 

 p = 5, q = 11

 n = 511 = 55

 f(n) = 410 = 40 

 e = 3

 d = 27 (327 = 81 = 240 + 1)

M 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

C 1 8 27 9 15 51 13 17 14 10 11 23 52 49 20 26 18 2

M 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

C 39 25 21 33 12 19 5 31 48 7 24 50 36 43 22 34 30 16

M 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

C 53 37 29 35 6 3 32 44 45 41 38 42 4 40 46 28 47 54

• Encryption

 C = M3 mod 55

• Decryption

 M = C27 mod 55



Questions 1

 In the previous example, why encrypting 
small messages, e.g., M=2,3,4 is tricky?

 Recall Enc(M) = M^3 mod 55

 Let 
N=20434394384355534343545428943483
434356094. Assume it is the product of 
two primes

 Can e be the number 4343253453434536?



Questions 2
 Problem with RSA?

 Does it satisfy semantic security?



Security of RSA
 Security of RSA based on 

difficulty of factoring

 Widely believed

 Best  known algorithm takes 
exponential time

 How can you break RSA if you 
can factor?

 In 1999, 512-bit challenge 
factored in 4 months using 
35.7 CPU-years

 160 175-400 MHz SGI and Sun

 8 250 MHz SGI Origin

 120 300-450 MHz Pentium II

 4 500 MHz Digital/Compaq

 In 2005, a team of researchers 
factored the RSA-640 challenge 
number using 30 2.2GHz CPU years

 In 2004, the prize for factoring RSA-
2048 was $200,000

 Current practice is 2,048-bit keys
 Estimated resources needed to factor 

a number within one year 

Length 
(bits)

PCs Memory

430 1 128MB

760 215,000 4GB

1,020 342106 170GB

1,620 1.61015 120TB



Correctness

 We show the correctness of 
the RSA cryptosystem for the 
case when the plaintext M
does not divide n

 Namely, we show that

(Me)d mod n = M

 Since ed mod f(n) = 1, there is 
an integer k such that

ed = kf(n) + 1

 Since M does not divide n, by 

Euler’s theorem we have

Mf(n) mod n = 1

 Thus, we obtain

(Me)d mod n =

Med mod n =

Mkf(n) + 1 mod n =
MMkf(n) mod n =

M (Mf(n))k mod n =

M (Mf(n) mod n)k mod n =

M (1)k mod n =

M mod n =

M

 Proof of correctness can be 
extended to the case when 
the plaintext M divides n



Algorithmic Issues

 The implementation of 
the RSA cryptosystem 
requires various 
algorithms

 Overall
Representation of integers 
of arbitrarily large size and 
arithmetic operations on 
them

 Encryption
Modular power

 Decryption
Modular power

 Setup
Generation of random 
numbers with a given 
number of bits (to generate 
candidates p and q)

Primality testing (to check 
that candidates p and q are 
prime)

Computation of the GCD (to 
verify that e and f(n) are 
relatively prime)

Computation of the 
multiplicative inverse (to 
compute d from e)



Modular Power

 The repeated squaring 
algorithm speeds up the 
computation of a modular 
power ap mod n

 Write the exponent p in binary

p = pb - 1 pb - 2 … p1 p0

 Start with

Q1 = apb - 1 mod n

 Repeatedly compute

Qi = ((Qi - 1)
2 mod n)apb - i mod n

 We obtain

Qb = ap mod n

 The repeated squaring 
algorithm performs O (log p) 
arithmetic operations

 Example

318 mod 19 (18 = 10010)

Q1 = 31 mod 19 = 3

Q2 = (32 mod 19)30 mod 19 = 9

Q3 = (92 mod 19)30 mod 19 = 

81 mod 19  = 5

Q4 = (52 mod 19)31 mod 19 =

(25 mod 19)3 mod 19 =

18 mod 19 = 18

Q5 = (182 mod 19)30 mod 19 = 

(324 mod 19) mod 19 = 

1719 + 1 mod 19 = 1

p5 - i 1 0 0 1 0

2p5 - i 3 1 1 3 1

Qi 3 9 5 18 1



Chinese remainder theorem light

 Let N=pq. Let

 x mod p = a1

 x mod q = a2  

 Then

 x mod N = a1* q * inverse(q in Zp)+ a2 * p * inverse(p in Zq) mod N

 Let’s prove it

 This can be used to compute W^x mod N, for big W^x, more efficiently

 How? 

 Use of theorem

 Say you want to compute 18^25 mod 35 (35 = 5*7)

 Compute 18^25 mod 5 = 18^(25 mod 4) mod 5= 18^1 mod 5 = 3 = a1

 Compute 18^25 mod 7 = 18^(25 mod 6) mod 7= 18^1 mod 7 = 4 = a2

 Note that inverse(5 in Z7)=3 and inverse(7 in Z5)=3

 Therefore the solution we are looking for is 3*7*3+4*5*3 mod 35= 18

 Used in the decryption procedure of RSA: Why cannot it be used in the 

encryption?

 Also we can prove correctness of RSA for general message M



Pseudoprimality Testing
 Testing whether a number is prime (primality testing) is a difficult 

problem, though polynomial-time algorithms exist

 An integer n  2 is said to be a base-x pseudoprime if 

 xn - 1 mod n = 1 (Fermat’s little theorem)

 Composite base-x pseudoprimes are rare:

 A random 100-bit integer is a composite base-2 pseudoprime with 
probability less than 10-13

 The smallest composite base-2 pseudoprime is 341

 Base-x pseudoprimality testing for an integer n: 

 Check whether xn - 1 mod n = 1

 Can be performed efficiently with the repeated squaring algorithm



RSA security and properties

 Plain RSA is deterministic.

 Why is this a problem?

 Plain RSA is also homomorphic. What does this mean?

 Multiply ciphertexts to get ciphertext of multiplication!

 [(m1)
e mod N][(m2)

e mod N] = (m1m2)
e mod N

 However, not additively homomorphic

 Both additively + multiplicative homomorphic (aka 
fully-homomorphic) encryption open problem till 2009

 A breakthrough result from IBM (Craig Gentry) 
answered this open problem, constructing such an 
encryption scheme



Real World Usage of RSA

 Randomized RSA

 To encrypt a message M under an RSA public key (n,e), 
generate a new random session AES key K, compute the 
cipher text as
 [Ke mod N, AESK(M)]

 This prevents an adversary distinguishing two 
encryptions of the same message since K is chosen at 
random every time the encryption takes place

 Could the following encryption work for arbitrary 
messages M?

 (M||r)e mod N, for random r



ElGamal Encryption

 Encrypts messages m  Zp

 Secret key: random number a Zp

 Public key: A = ga

 Encryption: Pick a random r  Zp and set 

 R = Ar = gar

 c1 = gr

 Then Enc(m) = (c1,c2) where c2=mR mod p

 Dec(c1,c2) = c2*(1/c1
a) mod p where c1

a= gak

 Security depends on Computational Diffie-Hellman 
(CDH) assumption:  given (g, ga,gb) it is hard to 
compute gab

 Do not use same k twice


