ENEE 459-C Computer Security

RSA and **ElGamal** encryption

Last lecture

- Euclidean algorithm
- Multiplicative inverses

Order of a group

- Order of a group: Number of elements contained in the group
- What is the order of $Z*p=\{1,2,...,p-1\}$
- The multiplicative group for Z_n , denoted with Z^*_n , is the subset of elements of Z_n relatively prime with n
- The totient function of n, denoted with $\phi(n)$, is the size of Z_n^*
- For a generator of a group g, it is: $g^{\phi(n)} = 1 \mod N$
- If N = pq (p and q are primes), $\varphi(N) = (p-1)(q-1)$
- Difficult problem: Given N, find p and q or $\varphi(N)$
- Example

$$\mathbf{Z}^*_{10} = \{ 1, 3, 7, 9 \}$$
 $\phi(10) = 4$

If p is prime, we have

$$Z^*_p = \{1, 2, ..., (p-1)\}$$
 $\phi(p) = p \square 1$

Fermat's Little Theorem

Theorem

Let p be a prime. For each nonzero x of \mathbb{Z}_p , we have $x^p - 1 \mod p = 1$

• Example (p = 5):

```
1^4 \mod 5 = 1 2^4 \mod 5 = 16 \mod 5 = 1 3^4 \mod 5 = 81 \mod 5 = 1 4^4 \mod 5 = 256 \mod 5 = 1
```

Corollary

Let p be a prime. For each nonzero residue x of Z_p , the multiplicative inverse of x is $x^{p-2} \mod p$

Proof

$$x(x^{p-2} \bmod p) \bmod p = xx^{p-2} \bmod p = x^{p-1} \bmod p = 1$$

Euler's Theorem

Euler's Theorem

For each element x of $\mathbb{Z}_{n'}^*$ we have $x^{\phi(n)} \mod n = 1$

• Example (n = 10)

```
3^{\phi(10)} \mod 10 = 3^4 \mod 10 = 81 \mod 10 = 1

7^{\phi(10)} \mod 10 = 7^4 \mod 10 = 2401 \mod 10 = 1

9^{\phi(10)} \mod 10 = 9^4 \mod 10 = 6561 \mod 10 = 1
```

Computing in the exponent

- For the multiplicative group $Z^*_{n'}$ we can compute in the exponent modulo $\phi(n)$
- Corollary: For Z_p^* , we can compute in the exponent modulo **p-1**
- Example

$$Z^*_{10} = \{ 1, 3, 7, 9 \}$$
 $\phi(10) = 4$
 $3 \land 1590 \mod 10 = 3 \land (1590 \mod 4) \mod 10 = 3 \land 2 \mod 10 = 9$

How about 2⁸ mod 10?

Example for p=19

$$Z^*_p = \{1, 2, ..., (p-1)\}$$
 $\phi(p) = p - 1$
15^39 mod 19 = 15^(39 mod 18) mod 19 = 15^3 mod 19 = 12

RSA Cryptosystem

Setup:

- n = pq, with p and q primes
- e relatively prime to $\phi(n) = (p-1)(q-1)$
- d inverse of e in $Z_{\phi(n)}$

Keys:

- Public key: $K_E = (n, e)$
- Private key: $K_D = d$

• Encryption:

- Plaintext M in Z_n
- $C = M^e \mod n$

Decryption:

$$M = C^d \mod n$$

Example

- Setup:
 - p = 7, q = 17
 - n = 7.17 = 119
 - $\phi(n) = 6.16 = 96$
 - e = 5
 - d = 77
- Keys:
 - public key: (119, 5)
 - private key: 77
- Encryption:
 - **◆** *M* = 19
 - $C = 19^5 \mod 119 = 66$
- Decryption:
 - $C = 66^{77} \mod 119 = 19$

Complete RSA Example

Setup:

■
$$p = 5, q = 11$$

$$n = 5.11 = 55$$

$$-\phi(n) = 4.10 = 40$$

■
$$d = 27 (3.27 = 81 = 2.40 + 1)$$

- Encryption
 - $C = M^3 \mod 55$
- Decryption

■
$$M = C^{27} \mod 55$$

M	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
\boldsymbol{C}	1	8	27	9	15	51	13	17	14	10	11	23	52	49	20	26	18	2
M	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
\boldsymbol{C}	39	25	21	33	12	19	5	31	48	7	24	50	36	43	22	34	30	16
M	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
\boldsymbol{C}	53	37	29	35	6	3	32	44	45	41	38	42	4	40	46	28	47	54

Questions 1

- In the previous example, why encrypting small messages, e.g., M=2,3,4 is tricky?
 - Recall Enc(M) = M^3 mod 55

- Let
 N=20434394384355534343545428943483
 434356094. Assume it is the product of two primes
 - Can e be the number 4343253453434536?

Questions 2

- Problem with RSA?
- Does it satisfy semantic security?

Security of RSA

- Security of RSA based on difficulty of factoring
 - Widely believed
 - Best known algorithm takes exponential time
- How can you break RSA if you can factor?
- In 1999, 512-bit challenge factored in 4 months using 35.7 CPU-years
 - 160 175-400 MHz SGI and Sun
 - 8 250 MHz SGI Origin
 - 120 300-450 MHz Pentium II
 - 4 500 MHz Digital/Compaq

- In 2005, a team of researchers factored the RSA-640 challenge number using 30 2.2GHz CPU years
- In 2004, the prize for factoring RSA-2048 was \$200,000
- Current practice is 2,048-bit keys
- Estimated resources needed to factor a number within one year

Length (bits)	PCs	Memory
430	1	128MB
760	215,000	4GB
1,020	342×10 ⁶	170GB
1,620	1.6×10 ¹⁵	120TB

Correctness

- We show the correctness of the RSA cryptosystem for the case when the plaintext M does not divide n
- Namely, we show that $(M^e)^d \mod n = M$
- Since $ed \mod \phi(n) = 1$, there is an integer k such that

$$ed = k\phi(n) + 1$$

 Since M does not divide n, by Euler's theorem we have

$$M^{\phi(n)} \mod n = 1$$

Thus, we obtain $(M^e)^d \mod n =$ $M^{ed} \mod n =$ $M^{k\phi(n)+1} \mod n =$ $MM^{k\phi(n)} \mod n =$ $M (M^{\phi(n)})^k \mod n =$ $M (M^{\phi(n)})^k \mod n =$ $M (1)^k \mod n =$

Proof of correctness can be extended to the case when the plaintext *M* divides *n*

 $M \mod n =$

M

Algorithmic Issues

- The implementation of the RSA cryptosystem requires various algorithms
- Overall
 - Representation of integers of arbitrarily large size and arithmetic operations on them
- Encryption
 - Modular power
- Decryption
 - Modular power

- Setup
 - Generation of random numbers with a given number of bits (to generate candidates p and q)
 - Primality testing (to check that candidates p and q are prime)
 - •Computation of the GCD (to verify that e and $\phi(n)$ are relatively prime)
 - ■Computation of the multiplicative inverse (to compute *d* from *e*)

Modular Power

- The repeated squaring algorithm speeds up the computation of a modular power a^p mod n
- Write the exponent p in binary

$$p = p_{b-1}p_{b-2} \dots p_1p_0$$

Start with

$$Q_1 = a^{p_{b-1}} \bmod n$$

Repeatedly compute

$$\mathbf{Q}_i = ((\mathbf{Q}_{i-1})^2 \bmod n) a^{p_{b-i}} \bmod n$$

We obtain

$$Q_b = a^p \mod n$$

• The repeated squaring algorithm performs $O(\log p)$ arithmetic operations

Example

- $-3^{18} \mod 19 (18 = 10010)$
- $\mathbf{Q}_1 = 3^1 \mod 19 = 3$
- $\mathbf{Q}_2 = (3^2 \mod 19)3^0 \mod 19 = 9$
- $\mathbf{Q}_3 = (9^2 \mod 19)3^0 \mod 19 = 81 \mod 19 = 5$
- $\mathbf{Q}_4 = (5^2 \mod 19)3^1 \mod 19 =$ $(25 \mod 19)3 \mod 19 =$ $18 \mod 19 = 18$
- $\mathbf{Q}_5 = (18^2 \mod 19)3^0 \mod 19 =$ $(324 \mod 19) \mod 19 =$ $17.19 + 1 \mod 19 = 1$

p _{5 - i}	1	0	0	1	0
2 p _{5 - i}	3	1	1	3	1
Qi	3	9	5	18	1

Chinese remainder theorem light

- Let N=pq. Let
 - $x \mod p = a1$
 - $x \mod q = a2$
- Then
 - $x \mod N = a1*q*inverse(q in Zp)+a2*p*inverse(p in Zq) \mod N$
 - Let's prove it
 - This can be used to compute W^x mod N, for big W^x, more efficiently
 - How?
- Use of theorem
 - Say you want to compute $18^25 \mod 35 (35 = 5^*7)$
 - Compute $18^25 \mod 5 = 18^2 \mod 4 \mod 5 = 18^1 \mod 5 = 3 = a1$
 - Compute $18^25 \mod 7 = 18^2 \mod 6 \mod 7 = 18^1 \mod 7 = 4 = a2$
 - Note that inverse(5 in \mathbb{Z}_7)=3 and inverse(7 in \mathbb{Z}_5)=3
 - Therefore the solution we are looking for is $3*7*3+4*5*3 \mod 35=18$
- Used in the decryption procedure of RSA: Why cannot it be used in the encryption?
- Also we can prove correctness of RSA for general message M

Pseudoprimality Testing

- Testing whether a number is prime (primality testing) is a difficult problem, though polynomial-time algorithms exist
- An integer $n \ge 2$ is said to be a base-x pseudoprime if
 - $x^{n-1} \mod n = 1$ (Fermat's little theorem)
- Composite base-x pseudoprimes are rare:
 - A random 100-bit integer is a composite base-2 pseudoprime with probability less than 10⁻¹³
 - The smallest composite base-2 pseudoprime is 341
- Base-x pseudoprimality testing for an integer n:
 - Check whether $x^{n-1} \mod n = 1$
 - Can be performed efficiently with the repeated squaring algorithm

RSA security and properties

- Plain RSA is deterministic.
- Why is this a problem?
- Plain RSA is also homomorphic. What does this mean?
 - Multiply ciphertexts to get ciphertext of multiplication!
 - $[(m_1)^e \mod N][(m_2)^e \mod N] = (m_1m_2)^e \mod N$
- However, not additively homomorphic
- Both additively + multiplicative homomorphic (aka fully-homomorphic) encryption open problem till 2009
- A breakthrough result from IBM (Craig Gentry) answered this open problem, constructing such an encryption scheme

Real World Usage of RSA

- Randomized RSA
 - To encrypt a message M under an RSA public key (n,e), generate a new random session AES key K, compute the cipher text as
 - [Ke mod N, AES_K(M)]
- This prevents an adversary distinguishing two encryptions of the same message since K is chosen at random every time the encryption takes place
- Could the following encryption work for arbitrary messages M?
 - (M||r)^e mod N, for random r

ElGamal Encryption

- Encrypts messages m ∈ Z_p
- Secret key: random number a∈ Z_p
- Public key: A = g^a
- Encryption: Pick a random r ∈ Z_p and set
 - \blacksquare R = A^r = g^{ar}
 - $\mathbf{c}_1 = \mathbf{g}^r$
 - Then $Enc(m) = (c_1, c_2)$ where $c_2 = mR \mod p$
 - $Dec(c_1,c_2) = c_2*(1/c_1^a) \mod p$ where $c_1^a = g^{ak}$
- Security depends on Computational Diffie-Hellman (CDH) assumption: given (g, g^a,g^b) it is hard to compute g^{ab}
- Do not use same k twice