ENEE 459-C
Computer Security

Message authentication codes
and PKI

&

UNIVERSITY QF

MARYLAND

Limitation of Using Hash
Functions for Authentication

N

= Require an authentic channel to transmit
the hash of a message

= Without such a channel, it is insecure,
because anyone can compute the hash value
of any message, as the hash function is
public

= Such a channel may not always exist
= How to address this?

= use more than one hash functions
= use a key to select which one to use

Message Authentication Code

= A MAC scheme is a hash family, used for
message authentication

= MAC(K,M) = H (M)

= The sender and the receiver share secret K

= The sender sends (M, H (M))

= The receiver receives (X,Y) and verifies
that H.(X)=Y, if so, then accepts the
message as from the sender

= To be secure, an adversary shouldn't be
able to come up with (X',Y’) such that
H.(X)=Y".

N

~ Security Requirements for MAC

N

= Resist the Existential Forgery under
Chosen Plaintext Attack

= Challenger chooses a random key K

= Adversary chooses a number of messages
My, M,, .., M,, and obtains t;=MAC(K,M;) for
1<j<n

= Adversary outputs M" and t’

= Adversary wins if Vj M'#M,, and
t'=MAC(K,M")

Constructing MAC from Hash

Functions

N

= Let h be a one-way hash function

= MAC(K,M) = h(K || M), where || denote
concatenation
= Tnsecure as MAC

= Because of the Merkle-Damgard construction
for hash functions, given M and t=h(K || M),

adversary can compute M'=M|]... and t/,
such that h(K||M") =t

HMAC: Constructing MAC from
. Cryptographic Hash Functions

HMAC[M] = H(K || H(K || M))

j HMAC Security

N

= If used with a secure hash functions
(e.g., SHA-256) and according to the
specification (key size, and use correct

output), no known practical attacks
against HMAC

N

Randomness is important!

L

T
T
T

ne keystream in the one-time pad
ne secret key used in ciphers

ne initialization vectors (IVs) used in ciphers

Pseudo-random Number Generator

N

= Pseudo-random number generator:

= A polynomial-time computable function f (x) that expands a
short random string x into a long string f (x) that appears
random

= Not truly random in that:
= Deterministic algorithm
= Dependent on initial values
= Anyone who considers arithmetical methods of

producing random digits is, of course, in a state of sin.”
— John von Neumann

= Objectives
= Fast
= Secure

Pseudo-random Number Generator

N

L

= (Classical PRNGs

= Linear Congruential Generator

= Cryptographically Secure PRNGs

= Blum-Micali Generator

Linear Congruential Generator - Algorithm

N

L

= Based on the linear recurrence:
X, = aX.+b modm 1>1

Where
X, is the seed or start value
a is the multiplier
b is the increment
m is the modulus

Output
(Xy, X5, «eny %)
Y, = X; mod 2

Y = (Yi¥5-..Y,) € pseudo-random sequence of K bits

Linear Congruential Generator - Example

N

L

= letx,= 3X,.;,+5mod 31 n>1,and x, = 2
= 3 and 31 are relatively prime, one-to-one (affine cipher)
= 31 is prime, order is 30

= Then we have the 30 residues in a cycle:

- 2,11, 7,26, 21, 6, 23, 12, 10, 4, 17, 25, 18, 28, 27, 24, 15, 19, 0O,
5,20, 3, 14, 16, 22,9, 1, 8, 29, 30

= Pseudo-random sequences of 10 bits
= when x, = 2
01101010001
= When x, = 3
10001101001

Linear Congruential Generator - Security

N

L

= Fast, but insecure

= Sensitive to the choice of parameters a, b, and m
= Serial correlation between successive values
= Short period, often m=232 or m=264

Linear Congruential Generator -
Application

N

= Used commonly in compilers
= Rand()

= Not suitable for high-quality randomness applications

= Not suitable for cryptographic applications
= Use cryptographically secure pseudo-random number generators

N

Cryptographically Secure

= Passing the next-bit test

= Given the first k bits of a string generated by PRBG, there is no
polynomial-time algorithm that can correctly predict the next (k
+13/th bit with probability significantly greater than %

= Next-bit unpredictable

Blum-Micali Generator - Concept

N

L

= Discrete logarithm

= Let p be an odd prime, then (Z,", *) is a cyclic group with
order p-1

= Let g be a generator of the group, then |<g>| = p-1, and for

any element a in the group , we have gk = a mod p for some
integer k

= If we know K, it is easy to compute a

= However, the inverse is hard to compute, that is, if we know a,
it is hard to compute k = log, a

= Example

= (Z,57,) is a cyclic group with order 16, 3 is the generator of
the group and 31°= 1 mod 17

= Let k=4, 3*= 13 mod 17, which is easy to compute
= The inverse: 3k= 13 mod 17, what is k? what about large p?

Blum-Micali Generator - Algorithm

N

L

= Based on the discrete logarithm one-way function:
= Let p be an odd prime, then (Z,", *) is a cyclic group

= Let g be a generator of the group, then for any element a, we
have gk = a mod p for some k

= Let x, be a seed

X, = g%t mod p 1>1

Output
(X1, X35 -2y Xi)
y. = 0 otherwise
Y = (YiY5...Yy) € pseudo-random sequence of K bits

Blum-Micali Generator - Security

N

L

= Blum-Micali Generator is provably secure

= [t is difficult to predict the next bit in the sequence given the
previous bits, assuming it is difficult to invert the discrete logarithm
function (by reduction)

Review of Secret Key
/ (Symmetric) Cryptography

N

= Confidentiality
= block ciphers with encryption modes
= Integrity

= Message authentication code (keyed hash
functions)

= Limitation: sender and receiver must
share the same key

= Needs secure channel for key distribution

= Impossible for two parties having no prior
relationship

= Needs many keys for n parties to
communicate

~ Concept of Public Key Encryption

N

= Each party has a pair (K, K1) of keys:
= K is the public key, and used for encryption
= K'listhe private key, and used for decryption
= Satisfies D[E([M]] =M

= Knowing the public-key K, it is computationally infeasible
to compute the private key K1
= Easy to check K,K1is a pair
= The public-key K may be made publicly available, e.g., in
a publicly available directory
= Many can encrypt, only one can decrypt

= Public-key systems aka asymmetric crypto systems

Public Key Cryptography Early
History

N

= Proposed by Diffie and Hellman, documented in “"New
Directions in Cryptography” (1976)
1. Public-key encryption schemes
2. Key distribution systems
= Diffie-Hellman key agreement protocol
3. Digital signature

= Public-key encryption was proposed in 1970 in a
classified paper by James Ellis

= paper made public in 1997 by the British Governmental
Communications Headquarters

= Concept of digital signature is still originally due to Diffie
& Hellman

J Public Key Encryption Algorithms

N

= Almost all public-key encryption
algorithms use either number theory and
modular arithmetic, or elliptic curves

= RSA

= based on the hardness of factoring large
numbers

= El Gamal

= Based on the hardness of solving discrete
logarithm

= Use the same idea as Diffie-Hellman key
agreement

