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Limitation of Using Hash 
Functions for Authentication 
§  Require an authentic channel to transmit 

the hash of a message 
§ Without such a channel, it is insecure, 

because anyone can compute the hash value 
of any message, as the hash function is 
public 

§  Such a channel may not always exist 

§  How to address this? 
§  use more than one hash functions 
§  use a key to select which one to use 



Message Authentication Code 
§  A MAC scheme is a hash family, used for 

message authentication 
§  MAC(K,M) = HK(M) 
§  The sender and the receiver share secret K 
§  The sender sends (M, Hk(M)) 
§  The receiver receives (X,Y) and verifies 

that HK(X)=Y, if so, then accepts the 
message as from the sender 

§  To be secure, an adversary shouldn’t be 
able to come up with (X’,Y’) such that 
HK(X’)=Y’. 



Security Requirements for MAC 
§  Resist the Existential Forgery under 

Chosen Plaintext Attack 
§  Challenger chooses a random key K 
§  Adversary chooses a number of messages 

M1, M2, .., Mn, and obtains tj=MAC(K,Mj) for 
1≤j≤n 

§  Adversary outputs M’ and t’ 
§  Adversary wins if ∀j M’≠Mj, and 

t’=MAC(K,M’) 



Constructing MAC from Hash 
Functions 
§  Let h be a one-way hash function 

§  MAC(K,M) = h(K || M), where || denote 
concatenation 
§  Insecure as MAC 
§  Because of the Merkle-Damgard construction 

for hash functions, given M and t=h(K || M), 
adversary can compute M’=M||… and t’, 
such that h(K||M’) = t’ 



HMAC: Constructing MAC from 
Cryptographic Hash Functions 

HMACK[M] = H(K || H(K || M)) 



HMAC Security 
§  If used with a secure hash functions 

(e.g., SHA-256) and according to the 
specification (key size, and use correct 
output), no known practical attacks 
against HMAC 



Randomness is important! 

§  The keystream in the one-time pad 
§  The secret key used in ciphers 
§  The initialization vectors (IVs) used in ciphers 
       



Pseudo-random Number Generator 
§  Pseudo-random number generator:  

§  A polynomial-time computable function f (x) that expands a 
short random string x into a long string f (x) that appears 
random 

 
§  Not truly random in that:  

§  Deterministic algorithm 
§  Dependent on initial values 

§  Anyone who considers arithmetical methods of 
producing random digits is, of course, in a state of sin.” 
– John von Neumann 

§  Objectives  
§  Fast 
§  Secure       



Pseudo-random Number Generator 
§  Classical PRNGs 

§  Linear Congruential Generator 
 
§  Cryptographically Secure PRNGs 

§  Blum-Micali Generator 
 
       



Linear Congruential Generator - Algorithm 

§  Based on the linear recurrence: 
 xi =  a xi-1 + b  mod m   i≥1 
  
 Where 
  x0 is the seed or start value 
  a is the multiplier 
  b is the increment 
  m is the modulus 
  
 Output  
  (x1, x2, …, xk) 
  yi = xi mod 2 
  Y = (y1y2…yk)   ß  pseudo-random sequence of K bits 

       



Linear Congruential Generator - Example 

§  Let xn =  3 xn-1 + 5 mod 31  n≥1, and x0 = 2 
§  3 and 31 are relatively prime, one-to-one (affine cipher)  
§  31 is prime, order is 30 

§  Then we have the 30 residues in a cycle: 
§  2, 11, 7, 26, 21, 6, 23, 12, 10, 4, 17, 25, 18, 28, 27, 24, 15, 19, 0, 

5, 20, 3, 14, 16, 22, 9, 1, 8, 29, 30 

§  Pseudo-random sequences of 10 bits  
§  when x0 = 2 

  01101010001 
§  When x0 = 3 

  10001101001 



Linear Congruential Generator - Security 

§  Fast, but insecure 
§  Sensitive to the choice of parameters a, b, and m 
§  Serial correlation between successive values 
§  Short period, often m=232 or m=264 



Linear Congruential Generator - 
Application 

§  Used commonly in compilers 
§  Rand() 

§  Not suitable for high-quality randomness applications  
§  Not suitable for cryptographic applications  

§  Use cryptographically secure pseudo-random number generators 



Cryptographically Secure  

§  Passing the next-bit test 
§  Given the first k bits of a string generated by PRBG, there is no 

polynomial-time algorithm that can correctly predict the next (k
+1)th bit with probability significantly greater than ½ 

§  Next-bit unpredictable   



Blum-Micali Generator - Concept 
§  Discrete logarithm 

§  Let p be an odd prime, then (Zp
*, ·) is a cyclic group with 

order p-1 
§  Let g be a generator of the group, then |<g>| = p-1, and for 

any element a in the group , we have gk = a mod p for some 
integer k 

§  If we know k, it is easy to compute a 
§  However, the inverse is hard to compute, that is, if we know a, 

it is hard to compute k = logg a 

§  Example 
§  (Z17

*, ·) is a cyclic group with order 16, 3 is the generator of 
the group and 316 = 1 mod 17 

§  Let k=4, 34 = 13 mod 17, which is easy to compute 
§  The inverse: 3k = 13 mod 17, what is k? what about large p? 



Blum-Micali Generator - Algorithm 
§  Based on the discrete logarithm one-way function: 

§  Let p be an odd prime, then (Zp
*, ·) is a cyclic group 

§  Let g be a generator of the group, then for any element a, we 
have gk = a mod p for some k 

§  Let x0 be a seed  

 xi = gxi-1 mod p   i≥1 
 

 Output 
  (x1, x2, …, xk)   

  yi = 1  if xi ≥ (p-1)/2 
  yi = 0  otherwise  
  Y = (y1y2…yk)     ß pseudo-random sequence of K bits 



Blum-Micali Generator - Security 

§  Blum-Micali Generator is provably secure 
§  It is difficult to predict the next bit in the sequence given the 

previous bits, assuming it is difficult to invert the discrete logarithm 
function (by reduction) 



Review of Secret Key 
(Symmetric) Cryptography  
§  Confidentiality 

§  block ciphers with encryption modes 
§  Integrity 

§ Message authentication code (keyed hash 
functions) 

§  Limitation: sender and receiver must 
share the same key 
§  Needs secure channel for key distribution 
§  Impossible for two parties having no prior 

relationship 
§  Needs many keys for n parties to 

communicate 



Concept of Public Key Encryption 
§  Each party has a pair (K, K-1) of keys:  

§  K is the public key, and used for encryption 
§  K-1 is the private key, and used for decryption 
§  Satisfies    DK-1[EK[M]] = M 

§  Knowing the public-key K, it is computationally infeasible 
to compute the private key K-1 
§  Easy to check K,K-1 is a pair 

§  The public-key K may be made publicly available, e.g., in 
a publicly available directory 
§  Many can encrypt, only one can decrypt 

§  Public-key systems aka asymmetric crypto systems 



Public Key Cryptography Early 
History 
§  Proposed by Diffie and Hellman, documented in “New 

Directions in Cryptography” (1976)  
1.  Public-key encryption schemes 
2.  Key distribution systems 

§  Diffie-Hellman key agreement protocol 
3.  Digital signature 

§  Public-key encryption was proposed in 1970 in a 
classified paper by James Ellis 
§  paper made public in 1997 by the British Governmental 

Communications Headquarters 

§  Concept of digital signature is still originally due to Diffie 
& Hellman 



Public Key Encryption Algorithms 
§  Almost all public-key encryption 

algorithms use either number theory and 
modular arithmetic, or elliptic curves 

§  RSA 
§  based on the hardness of factoring large 

numbers 

§  El Gamal 
§  Based on the hardness of solving discrete 

logarithm 
§  Use the same idea as Diffie-Hellman key 

agreement 


