ENEE 457: Computer Systems Security

Lecture 6 Public Key Crypto II: RSA, ElGamal, Diffie-Hellman

Charalampos (Babis) Papamanthou

Department of Electrical and Computer Engineering University of Maryland, College Park

How to distribute the cryptographic keys?

• If the users can meet in person beforehand – it's simple.

- But what to do if they **cannot meet**?
 - (a typical example: on-line shopping)

A naive solution:

give to every user \mathbf{P}_i a separate key \mathbf{K}_{ij} to communicate with every \mathbf{P}_i

In general: a quadratic number of keys is needed

Problems:

- Someone (a **Key Distribution Center, KDC**) needs to "give the keys"
 - **feasible** if the users are e.g. working in one company
 - **infeasible** on the internet
 - relies on the honesty of **KDC**
 - **KDC** needs to be permanently available
 - •

. . .

• The users need to store large numbers of keys in a secure way

Plan

1. The problem of key distribution

3. The solution of Rivest, Shamir and Adleman

The solution:

Public-Key Cryptography

Ralph Merkle (1974)

Whitfield Diffie and Martin Hellman (1976)

A little bit of history

• **Diffie and Hellman** were the first to publish a paper containing the idea of the public-key cryptography:

W.Diffie and M.E.Hellman, **New directions in cryptography** IEEE Trans. Inform. Theory, IT-22, 6, **1976**, pp.644-654.

- A similar idea was described by Ralph Merkle:
 - in 1974 he described it in a project proposal for a Computer Security course at UC Berkeley (it was rejected)
 - in 1975 he submitted it to the CACM journal (it was rejected) (see http://www.merkle.com/1974/)
- It 1997 the GCHQ (the British equivalent of the NSA) revealed that they new it already in 1973.

The idea

Instead of using one key K,

- use 2 keys (pk,sk), where
 - **pk** is used for **encryption**,
 - **sk** is used for **decryption**, or
 - sk is used for computing a tag,
 - pk is used for verifying correctness of the tag.

Moreover: pk can be public, and only **sk** has to be kept secret!

That's why it's called: public-key cryptography

this will be called "signatures"

Sign – the signing algorithm

Anyone can send encrypted messages to anyone else

Anyone can verify the signatures

Things that need to be discussed

• ...

- Who maintains "the register"?
- How to contact it securely?
- How to revoke the key (if it is lost)?

But is it possible?

In "physical world": yes! Examples:

- 1. "normal" signatures
- 2. padlocks:

Diffie and Hellman (1976)

- Diffie and Hellman proposed the public key cryptography in **1976**.
- They won the Turing award for that work in 2016 (Turing award is considered to be the Nobel Prize for Computer Science)
- They just proposed the **concept**, not the **implementation**.
- They have also shown a protocol for **key-exchange**.

The observation of Diffie and Hellman:

Plan

- 1. The problem of key distribution
- 2. The idea of Merkle, Diffie and Hellman
- 3. The solution of Rivest, Shamir and Adleman

Do such functions exist?

Yes: exponentiation modulo **N**, where **N** is a product of two large primes.

RSA function is (conjectured to be) a trapdoor permutation!

The RSA function

N = pq, such that p and q are primes, and |p| = |q| φ(N) = (p-1)(q-1).

e is such that $gcd(e, \phi(N)) = 1$ d is such that $ed = 1 \pmod{\phi(N)}$ pk := (N,e) sk := (N,d)

Enc_{pk}: $Z_N^* \to Z_N^*$ is defined as: Enc_{pk} (m) = m^e mod N. Dec_{sk}: $Z_N^* \to Z_N^*$ is defined as: Dec_{sk} (c) = c^d mod N.

An observation

From the previous lecture we know that

- Enc_{pk}: $Z_N^* \to Z_N^*$ is a permutation and
- **Dec**_{sk}: $Z_N^* \to Z_N^*$ is its inverse.

<u>Fact</u> Enc_{pk} is also a permutation over Z_N and Dec_{sk} is its inverse.

In fact, this doesn't even matter that much because:

if one finds an element $\mathbf{a} \in \mathbb{Z}_N \setminus \mathbb{Z}_N^*$ then one can factor N, because: $gcd(\mathbf{a}, \mathbf{N}) > 1.$

So, finding such an element is as hard as factoring N.

A proof of the fact from the previous slide

Suppose $x = 0 \mod p$. Then (trivially) $(x^e)^d = x \mod p$ On the other hand: $(x^e)^d = x^{ed} = x^1 \mod q$ because: $ed = 1 \mod (p-1)(q-1)$, and therefore $ed = 1 \mod (q-1)$ QED

Is RSA secure?

Is **RSA** secure:

- 1. as an encryption scheme?
- 2. as a signature scheme?

The answer is not that simple.

First, we need to define security! We will do it on the next two lectures.

•Slides adjusted from:

http://dziembowski.net/Teaching/BISS09/

©2009 by Stefan Dziembowski. Permission to make digital or hard copies of part or all of this material is currently granted without fee *provided that copies are made only for personal or classroom use, are not distributed for profit or commercial advantage, and that new copies bear this notice and the full citation*.

The "handbook RSA encryption"

N = pq - RSA modulus

e is such that $gcd(e, \phi(N)) = 1$, d is such that $ed = 1 \pmod{\phi(N)}$

 $Enc_{(e,N)}(m) = m^e \mod N,$

and $Dec_{(d,N)}(c) = c^d \mod N$.

Problems

Enc_{pk} is deterministic, so: if one encrypts twice the same message then the ciphertexts are the same

Therefore if the message space **M** is small, the adversary can check all possible messages:

given a ciphertext **c** do: for every **m ε M** check if Enc_{pk}(**m**) = **c**

for example if M={yes,no}, then the encryption is not
 secure.

RSA has some "algebraic properties".

Algebraic properties of RSA

RSA is homorphic: 1. $Enc_{(e,N)}(m_{0} \cdot m_{1}) = (m_{0} \cdot m_{1})^{e}$ = $m_{0}^{e} \cdot m_{1}^{e}$ = $Enc_{(e,N)}(m_{0}) \cdot Enc_{(e,N)}(m_{1})$ why is it bad? By checking if $\mathbf{c}_0 \cdot \mathbf{c}_1 = \mathbf{c}$ the adversary can detect if $Dec_{(d,N)}(c_0) \cdot Dec_{(d,N)}(c_1) = Dec_d(c)$

Question: Is RSA secure?

Looks like it has some weaknesses...

Plan:

- 1. Provide a formal security definition.
- 2. Modify **RSA** so that it is secure according to this definition.

A mathematical view

- A public-key encryption (PKE) scheme is a triple (Gen, Enc, Dec) of poly-time algorithms, where
- Gen is a key-generation randomized algorithm that takes as input a security parameter 1ⁿ and outputs a key pair (pk,sk).
- Enc is an encryption algorithm that takes as input the public key pk and a message m, and outputs a ciphertext c,
- Dec is an decryption algorithm that takes as input the private key pk and the ciphertext c, and outputs a message m'.

We will sometimes write Enc_{pk}(m) and Dec_{sk}(c) instead of Enc(pk,m) and Dec(sk,c).

Correctness

P(Dec_{sk}(Enc_{pk}(m)) ≠ m) is negligible in n

A simplified view

has to guess b

CPA-security

Alternative name: CPA-secure

Security definition:

We say that (Gen,Enc,Dec) has indistinguishable encryptions under a chosen-plaintext attack (CPA) if any

randomized polynomial time adversary

guesses **b** correctly

with probability at most $0.5 + \epsilon(n)$, where ϵ is negligible.

Is the "handbook RSA" secure?

the "handbook RSA"

Not secure!

In fact:

No deterministic encryption scheme is secure.

How can the adversary win the game?

- 1. he just chooses any **m₀, m₁**,
- 2. computes c₀=Enc(pk,m₀) himself
- 3. compares the result.

Moral: encryption has to be randomized.

Encoding

- Therefore, before encrypting a message we usually **encode it** (adding some randomness).
- This has the following advantages:
- makes the encryption non-deterministic
- breaks the "algebraic properties" of encryption.

How is it done in real-life?

PKCS #1: RSA Encryption Standard Version 1.5:

public-key: (N,e) let $\mathbf{k} :=$ length on N in bytes. let $\mathbf{D} :=$ length of the plaintext requirement: $\mathbf{D} \leq \mathbf{k} - \mathbf{11}$.

Enc((N,e), m) := x^e \mod N, where x is equal to:

Security of the PKCS #1: RSA Encryption Standard Version 1.5.

It is **believed** to be CPA-secure.

It has however some weaknesses (it is not "chosen-ciphertext secure").

Optimal Asymmetric Encryption Padding (OAEP) is a more secure encoding.

(we will not refer to that)

Algorithmic Issues

- The implementation of the RSA cryptosystem requires various algorithms
- Overall
 - Representation of integers of arbitrarily large size and arithmetic operations on them
- Encryption
 - Modular power
- Decryption
 - Modular power

- Setup
 - Generation of random numbers with a given number of bits (to generate candidates *p* and *q*)
 - Primality testing (to check that candidates *p* and *q* are prime)
 - Computation of the GCD (to verify that e and $\phi(n)$ are relatively prime)
 - Computation of the multiplicative inverse (to compute *d* from *e*)

Modular Power

- The repeated squaring algorithm speeds up the computation of a modular power a^p mod n
- Write the exponent *p* in binary

 $\boldsymbol{p} = \boldsymbol{p}_{\boldsymbol{b}-1} \boldsymbol{p}_{\boldsymbol{b}-2} \dots \boldsymbol{p}_1 \boldsymbol{p}_0$

- Then $a^p \mod n = a^{p_{b-1} + p_{b-2}} \mod n = a^{p_{b-1} + p_{b-2}} \mod n$
- We obtain

 $Q_b = a^p \mod n$

• The algorithm performs $O(\log p)$ arithmetic operations

Decryption can be done with CRT

• Why is it more efficient in this way?

How to construct PKE based on the hardness of discrete log?

RSA was a trapdoor permutation, so the construction was quite easy...

In case of the **discrete log**, we just have a one-way function.

Diffie and Hellman constructed something weaker than PKE: a **key exchange protocol** (also called key **agreement** protocol).

We'll not describe it. Then, we'll show how to "convert it" into a **PKE**.

initially they share no secret

The Diffie-Hellman Key exchange

G – a group, where **discrete log is believed to be hard** $\mathbf{q} = |\mathbf{G}|$ \mathbf{g} – a generator of **G**

Security of the Diffie-Hellman exchange

Eve should have no information about g^{yx}

Is it secure?

If the **discrete log in G** is easy then the **DH key exchange** is <u>not</u> secure.

(because the adversary can compute **x** and **y** from $\mathbf{g}^{\mathbf{x}}$ and $\mathbf{g}^{\mathbf{y}}$)

If the discrete log in **G** is hard, then...

it may also not be secure

So, Eve can compute some information about g^{yx} (namely: if it is a **QR**, or not).

How to fix the previous problem?

• Intuitively: Pick only even numbers in the exponent!

A problem

The protocols that we discussed are secure only against a **passive adversary** (that only eavesdrop).

What if the adversary is **active**?

She can launch a **man-in-the-middle** attack.

Man in the middle attack

A very realistic attack!

So, is this thing totally useless? No! (it is useful as a building block)

Plan

- 1. Problems with the handbook RSA encryption
- 2. Security definitions
- 3. How to encrypt with RSA?
- 4. Encryption based on discrete-log
 - 1. first step: Diffie-Hellman key exchange
 - 2. ElGamal encryption
- 5. Public-key vs. private key encryption

El Gamal encryption

El Gamal is another popular public-key encryption scheme.

It is based on the **Diffie-Hellman** key-exchange.

First observation

Remember that the one-time pad scheme can be generalized to any group?

- E.g.: $\mathcal{K} = \mathcal{M} = \mathcal{C} = \mathbf{G}$.
- Enc(k,m) = $m \cdot k$
- $Dec(k,m) = m \cdot k^{-1}$

So, if k is the key agreed in the DH key exchange, then
Alice can send a message m € G to Bob "encrypting it with k" by setting:
c := m ⋅ k

How does it look now?

The last two messages can be sent together

ElGamal encryption

El Gamal encryption

Let **H** be such that **DDH** is hard with respect to **H**.

Gen(1ⁿ) first runs **H** to obtain **(G,q)** and **q**. Then, it chooses $\mathbf{x} \leftarrow \mathbf{Z}_q$ and computes $\mathbf{h} := \mathbf{g}^{\mathbf{x}}$. (note: it is **randomized by definition**)

The public key is **(G,g,q,h).** The private key is **(G,g,q,x)**.

> Enc((G,g,q,h), m) := $(m \cdot h^y, g^y)$, where m \in G and y is a random element of G

Dec((G,g,q,x), (c_1,c_2)) := $c_1 \cdot c_2^{-x}$

Correctness

 $h = g^{x}$

$$Enc((G,g,q,h), m) = (m \cdot h^{y}, g^{y})$$

Dec((G,g,q,x), (c₁,c₂)) = c₁ · c₂^{-x} = $m \cdot h^{y} \cdot (g^{y})^{-x}$ = $m \cdot (g^{x})^{y} \cdot (g^{y})^{-x}$ = $m \cdot g^{xy} \cdot g^{-yx}$ = m

Public key vs. private key encryption

Private-key encryption has a following advantage:

it is much more efficient.

What we do in practice:

Use PKE to exchange secret key. Then use secret key to encrypt data.

©2009 by Stefan Dziembowski. Permission to make digital or hard copies of part or all of this material is currently granted without fee *provided that copies are made only for personal or classroom use, are not distributed for profit or commercial advantage, and that new copies bear this notice and the full citation*.