
ENEE 457: Computer Systems Security

Lecture 6
Public Key Crypto II: RSA, ElGamal, Diffie-Hellman

Charalampos (Babis) Papamanthou

Department of Electrical and Computer Engineering

University of Maryland, College Park

How to distribute the cryptographic keys?

• If the users can meet in person beforehand – it’s
simple.

• But what to do if they cannot meet?

(a typical example: on-line shopping)

A naive solution:

P5

P1

P3

P2

P4

K13
K12

K14

K15

give to every user Pi a separate key Kij to communicate
with every Pj

P5

P1

P3

P2

P4

In general:
a quadratic number of keys is needed

Problems:

• Someone (a Key Distribution Center, KDC) needs
to “give the keys”

• feasible if the users are e.g. working in one company

• infeasible on the internet

• relies on the honesty of KDC

• KDC needs to be permanently available

• ...

• The users need to store large numbers of keys in a
secure way

Plan

1. The problem of key distribution

2. The idea of Merkle, Diffie and Hellman

3. The solution of Rivest, Shamir and
Adleman

The solution:

Public-Key Cryptography

Whitfield Diffie and Martin Hellman (1976)Ralph Merkle (1974)

A little bit of history

• Diffie and Hellman were the first to publish a paper containing
the idea of the public-key cryptography:

W.Diffie and M.E.Hellman,
New directions in cryptography
IEEE Trans. Inform. Theory, IT-22, 6, 1976, pp.644-654.

• A similar idea was described by Ralph Merkle:
• in 1974 he described it in a project proposal for a Computer Security

course at UC Berkeley
(it was rejected)

• in 1975 he submitted it to the CACM journal (it was rejected)
(see http://www.merkle.com/1974/)

• It 1997 the GCHQ (the British equivalent of the NSA) revealed
that they new it already in 1973.

http://www.merkle.com/1974/

The idea
Instead of using one key K,

• use 2 keys (pk,sk), where

• pk is used for encryption,

• sk is used for decryption,
or

• sk is used for computing a tag,

• pk is used for verifying correctness of the tag.

Moreover: pk can be public, and only sk has to be kept
secret!

That’s why it’s called: public-key cryptography

this will be called
“signatures”

Sign – the signing
algorithm

Anyone can send encrypted messages to
anyone else

P5

P1

P3P2

P4

pk1

pk2

pk3

pk4

pk5

2. reads pk3

1. P1 wants to send m to P3

public register:

sk3

4. P3 computes
Dec(sk3,m)

Anyone can verify the signatures

P5

P1

P2

P4

pk1

pk2

pk3

pk4

pk5

public register:
Sign(sk3,m)

2. reads pk3

sk3

3. computes Vrfy(pk3,m)

P3

Things that need to be discussed

• Who maintains “the register”?

• How to contact it securely?

• How to revoke the key (if it is lost)?

• ...

We will discuss this things
later

(when we will be talking
about the Public-Key

Infrastructure)

anyone can lock it

But is it possible?

In “physical world”: yes!

Examples:

1. “normal” signatures

2. padlocks:

the key is needed to unlock

Diffie and Hellman (1976)

• Diffie and Hellman proposed the public key cryptography in 1976.

• They won the Turing award for that work in 2016 (Turing award is considered to
be the Nobel Prize for Computer Science)

• They just proposed the concept, not the implementation.

• They have also shown a protocol for key-exchange.

The observation of Diffie and Hellman:

plaintexts ciphertexts

(pk, sk) – the key pair

Enc(pk,x)

Dec(sk,y)

easy only if one knows sk

tags
(“signatures”) messages

Vrfy(pk,x)

Tag(sk,y)

easy only if one knows sk

public-key encryption:

signature schemes:

Looks similar...

Plan

1. The problem of key distribution

2. The idea of Merkle, Diffie and Hellman

3. The solution of Rivest, Shamir and
Adleman

Do such functions exist?

Ron Rivest, Adi Shamir, and Leonard Adleman (1977)

Yes: exponentiation modulo N, where N is a product of two large
primes.

RSA function is (conjectured to be) a trapdoor permutation!

The RSA function

N = pq, such that p and q are primes,

and |p| = |q|

e is such that gcd(e, φ(N)) = 1

d is such that ed = 1 (mod φ(N))

Encpk: ZN
* → ZN

* is defined as:

Encpk (m) = me mod N.

Decsk: ZN
* → ZN

* is defined as:

Decsk (c) = cd mod N.

φ(N) = (p-1)(q-1).

pk := (N,e)
sk := (N,d)

An observation
From the previous lecture we know that

• Encpk: ZN
* → ZN

* is a permutation and

• Decsk: ZN
* → ZN

* is its inverse.

Fact

Encpk is also a permutation over ZN and Decsk is its inverse.

In fact, this doesn’t even matter that much because:

if one finds an element a Є ZN \ ZN* then one can factor N, because:

gcd(a, N) > 1.

So, finding such an element is as hard as factoring N.

A proof of the fact from the previous slide

Suppose x = 0 mod p.

Then (trivially) (xe)d = x mod p

On the other hand: (xe)d = xed = x1 mod q

ZN

ZN*

mod p

mod q

because: ed = 1 mod (p-1)(q-1),
and therefore ed = 1 mod (q-1)

CRT (xe)d = x mod N

QED

Is RSA secure?

Is RSA secure:

1. as an encryption scheme?

2. as a signature scheme?

The answer is not that simple.

First, we need to define security!

We will do it on the next two lectures.

•Slides adjusted from:
•http://dziembowski.net/Teaching/BISS09/

©2009 by Stefan Dziembowski. Permission to make digital or hard copies of part or all of
this material is currently granted without fee provided that copies are made only for
personal or classroom use, are not distributed for profit or commercial advantage, and
that new copies bear this notice and the full citation.

The “handbook RSA encryption”

N = pq - RSA modulus

e is such that gcd(e, φ(N)) = 1,
d is such that ed = 1 (mod φ(N))

Enc(e,N) (m) = me mod N,

and Dec(d,N) (c) = cd mod N.

Problems

RSA has some “algebraic properties”.

Encpk is deterministic, so:
if one encrypts twice the same message then the

ciphertexts are the same

Therefore if the message space M is small, the adversary can
check all possible messages:

given a ciphertext c do:
for every m є M check if Encpk(m) = c

for example if M={yes,no}, then the encryption is not
secure.

Algebraic properties of RSA

1. RSA is homorphic:
Enc(e,N)(m0 · m1) = (m0 · m1)e

= m0
e · m1

e

= Enc(e,N)(m0) · Enc(e,N)(m1)
why is it bad?

By checking if
c0 · c1 = c

the adversary can detect if
Dec(d,N) (c0) · Dec (d,N)(c1) = Decd(c)

Question: Is RSA secure?

Looks like it has some weaknesses...

Plan:

1. Provide a formal security definition.

2. Modify RSA so that it is secure according to this definition.

A mathematical view

A public-key encryption (PKE) scheme is a triple (Gen, Enc,
Dec) of poly-time algorithms, where

 Gen is a key-generation randomized algorithm that takes as
input a security parameter 1n and outputs a key pair (pk,sk).

 Enc is an encryption algorithm that takes as input the public
key pk and a message m, and outputs a ciphertext c,

 Dec is an decryption algorithm that takes as input the private
key pk and the ciphertext c, and outputs a message m’.

We will sometimes write Encpk(m) and Decsk(c) instead of

Enc(pk,m) and Dec(sk,c).

Correctness

P(Decsk(Encpk(m)) ≠ m) is negligible in n

A simplified view

oracle

has to guess b

m0,m1

c = Enc(pk,mb)

chooses m0,m1

security parameter
1n

1. selects random
(pk,sk) = Gen(1n)

2. chooses a random b = 0,1

challenge phase:

pk

CPA-security

Security definition:

We say that (Gen,Enc,Dec) has indistinguishable
encryptions under a chosen-plaintext attack (CPA) if any

randomized polynomial time adversary

guesses b correctly

with probability at most 0.5 + ε(n), where ε is negligible.

Alternative name: CPA-secure

Is the “handbook RSA” secure?

Not secure!

In fact:

No deterministic encryption scheme is secure.

How can the adversary win the game?

1. he just chooses any m0,m1 ,

2. computes c0=Enc(pk,m0) himself

3. compares the result.

Moral: encryption has to be randomized.

the “handbook RSA”
N = pq - RSA modulus
e is such that gcd(e,d) = 1, d is such that ed = 1 (mod φ(N))

Enc(N,e)(m) = me mod N, and Dec(d,N)(c) = cd mod N.

Encoding

Therefore, before encrypting a message we usually encode it (adding some
randomness).

This has the following advantages:

• makes the encryption non-deterministic

• breaks the “algebraic properties” of encryption.

How is it done in real-life?

PKCS #1: RSA Encryption Standard Version 1.5:

public-key: (N,e)

let k := length on N in bytes.

let D := length of the plaintext

requirement: D ≤ k - 11.

Enc((N,e), m) := xe mod N, where x is equal to:

00000000 00000001 r 00000000 m

(k - D - 3) random non-zero
bytes

D bytes

k bytes

Security of the PKCS #1: RSA Encryption Standard Version 1.5.

It is believed to be CPA-secure.

It has however some weaknesses (it is not “chosen-ciphertext secure”).

Optimal Asymmetric Encryption Padding (OAEP) is a more secure encoding.

(we will not refer to that)

Algorithmic Issues

• The implementation of the
RSA cryptosystem requires
various algorithms

• Overall
•Representation of integers of
arbitrarily large size and
arithmetic operations on
them

• Encryption
•Modular power

• Decryption
•Modular power

• Setup
•Generation of random
numbers with a given number
of bits (to generate candidates
p and q)

•Primality testing (to check that
candidates p and q are prime)

•Computation of the GCD (to
verify that e and f(n) are
relatively prime)

•Computation of the
multiplicative inverse (to
compute d from e)

Modular Power

• The repeated squaring algorithm speeds up the computation of a modular
power ap mod n

• Write the exponent p in binary

p = pb - 1 pb - 2 … p1 p0

• Then ap mod n = ap_{b - 1}2^{b-1}+ p_{b - 2}2^{b-1}+ … +p_12+ p_0 mod n

• We obtain

Qb = ap mod n

• The algorithm performs O (log p) arithmetic operations

Decryption can be done with CRT
• Why is it more efficient in this way?

How to construct PKE based on the hardness of discrete log?

RSA was a trapdoor permutation, so the construction was
quite easy...

In case of the discrete log, we just have a one-way function.

Diffie and Hellman constructed something weaker than
PKE: a key exchange protocol (also called key
agreement protocol).

We’ll not describe it. Then, we’ll show how to “convert it”
into a PKE.

listens

Key exchange

Alice Bob

initially they share no secret

key k key k

Eve should have no information about k

We will formalize it later.
Let’s first show the protocol.

The Diffie-Hellman Key exchange

G – a group, where discrete log is believed to be hard

q = |G|

g – a generator of G

Alice Bob

x ← Zq
h1 = gx

y ← Zq

h2 = gy

output:
kA=(h2)x

output:
kB=(h1)y

equal to:
gyx

equal to:
gxy

equal!

Security of the Diffie-Hellman exchange

Eve

h1 = gx h2 = gyG,g

knows

Eve should have no information about gyx

gyx ?

Is it secure?

If the discrete log in G is easy then the DH key exchange is not secure.

(because the adversary can compute x and y from

gx and gy)

If the discrete log in G is hard, then...

it may also not be secure

Example: G = Zp
*

Alice Bob

x ← Zq
h1 = gx

y ← Zq

h2 = gy

x is even iff h1 is a QR

y is even iff h2 is a QR

Therefore:
gyx is a QR iff (h1 is a QR) or (h2 is a QR)

So, Eve can compute some information about gyx

(namely: if it is a QR, or not).

gyx ?

How to fix the previous problem?

• Intuitively: Pick only even numbers in the exponent!

A problem

The protocols that we discussed are secure only against a passive adversary
(that only eavesdrop).

What if the adversary is active?

She can launch a man-in-the-middle attack.

Man in the middle attack

Alice Bob

key k key k’key k key k’

I am Bob I am Alice

A very realistic attack!

So, is this thing totally useless?
No! (it is useful as a building block)

Plan

1. Problems with the handbook RSA
encryption

2. Security definitions

3. How to encrypt with RSA?

4. Encryption based on discrete-log

1. first step: Diffie-Hellman key exchange

2. ElGamal encryption

5. Public-key vs. private key encryption

El Gamal encryption

El Gamal is another popular public-key encryption scheme.

It is based on the Diffie-Hellman key-exchange.

First observation

Remember that the one-time pad scheme can be generalized to
any group?

E.g.: K = M = C = G.

• Enc(k,m) = m · k

• Dec(k,m) = m · k-1

So, if k is the key agreed in the DH key exchange, then

Alice can send a message m Є G to Bob “encrypting it with k”
by setting:

c := m · k

How does it look now?

Alice Bob

x ← Zq y ← Zq

h2 = gy

(G,g,q,h1)

(G,g) ← H(1n)

output:
m’ := c · (h2)-x

security parameter 1n

plaintext
m

c := m · (h1)y

since (h2)x = (h1)y

we get: m = m’

h1 = gx

The last two messages can be sent
together

Alice Bob

x ← Zq y ← Zq

(c, h2) :=
(m · (h1)y, gy)

(G,g) ← H(1n)

output:
m’ := c · (h2)-x

security parameter 1n

(G,g,q,h1)
h1 = gx

plaintext
m

ElGamal encryption

Alice Bob

x ← Zq y ← Zq

(c, h2) :=
(m · (h1)y, gy)

(G,g) ← H(1n)

output:
m’ := c · (h2)-x

security parameter 1n

(G,g,q,h1)
h1 = gx

plaintext
m

private key

public key

ciphertext

key generation

decryption

encryption

El Gamal encryption

Gen(1n) first runs H to obtain (G,q) and q. Then, it chooses x ← Zq

and computes h := gx. (note: it is randomized by definition)

Let H be such that DDH is hard with respect to H.

Enc((G,g,q,h), m) := (m · hy, gy) ,
where m Є G and y is a random element of G

Dec((G,g,q,x), (c1,c2)) := c1 · c2
-x

The public key is (G,g,q,h).
The private key is (G,g,q,x).

Correctness

Dec((G,g,q,x), (c1,c2)) = c1 · c2
-x

Enc((G,g,q,h), m) = (m · hy, gy)

= m · hy · (gy)-x

= m · (gx)y · (gy)-x

= m · gxy · g-yx

= m

h = gx

Public key vs. private key encryption

Private-key encryption has a following advantage:

it is much more efficient.

What we do in practice:

Use PKE to exchange secret key. Then use secret key to encrypt data.

©2009 by Stefan Dziembowski. Permission to make digital or hard copies of part or all of
this material is currently granted without fee provided that copies are made only for
personal or classroom use, are not distributed for profit or commercial advantage, and
that new copies bear this notice and the full citation.

