Securing Password Storage

Increasing Resistance to Brute Force Attacks

-JOHN (Steven)
Internal CTO
. @mlsplacedsoul

http://mobro.co/m1lsplacedstache

Chandu Ketkar Scott Matsumoto

Technical Manager Principal Consultant
|| @cketkar || @smatsumoto

Audience: OWASP crowd mainly; Developer secondly.

)
-
g

=

History /etc/password

etc/password * Circa1973

* ‘one-way’ password encryption
root:0:0:EC90xWpTKCo y P ryp

hjackman:100:100:KMEzyulaQQ2 * chmod a+r /etc/passwd

bgoldthwa:101:101:Po2gweIEPZ2 e DES took 1 sec per password
jsteven:102:500: EC90xWpTKCo

msoul:103:500:NTB4S. iQhwk
nminaj:104:500:a2N/98VTt2c

...bringing us to 2012

00000£ac2ec84586£9£5221a05¢0e9acc3d2e670 What do you see here?
0000022c7caab3ac515777b611a£73afc3d2ee50
deb46£052152cfed79e3b96£51e52b82c3d2ee8e How do we know what it is?

00000dc7cc04eald56cc8l62ad4cbd65aec3d2£0eb HOW COUId we ﬁgure thlS Out?
00000a2c4£4b579£c778e4910518a48ec3d2£f111
b3344eaec4585720ca23b338e58449e4c3d2£628

674db9%e37ace89b77401fa2bfe456144c3d2£708

In the news
37b5bledf4£84a85d79d04d75£d8£8alc3d2fbde
00000e56fae33ab04c81le727bf24bedbe3d2fc5a LinkedIn
0000058918701830b2ccal74758£7af4c3d30432 IEEE
000002e09eed4e5a8fcdae7e3082c9d8ec3d304a5

Yahoo

dl78cbe8d2a38al1575d3feed73d3£033c3d304d8
00000273b52ee943ab763d2bb3d83£5dc3d30904

SHAL ('password’)= 1ed4c9b93£f3f0682250b6cf8331b7ece68£d8

Golden Rules

S Your passwords
— Don't n t nt

page of InfoWeek WILL be

#2 — Have a great story when extracted from

you're on the front page of

InfoWeek yO ur SYSte m

The Rules are based on quotes by the CEO of Merrill Lynch when Merrill brought their
online banking system. Rule #1 was “Don’t be on the front page of the Wall Street
Journal”. Rule #2 was “Don’t be on the front page of the New York Times.

Here the second rule addresses the fact that we should assume that every
vulnerability in the system/application cannot be plugged and that the password
table will get into the wild.

Th% Threat Mode
Aun 08 Q

Va2
Struts Spring D(Pw)

AppServer S5[8

T2

1) Acquiring PW DB
2) Reversing PWs from stolen booty

(D Dictionary attack ® Padding Oracle attack
@ Brute-force attack ® Chosen plaintext attack
@ Rainbow Table attack @ Crypt-analytic attack

@ Length-extension attack Side-channel attack

This talk describes the control when the password table is leaked.

Introduce the problem in terms of the threat model — the Threat Model will be used
later to help show the defense-in-depth

Describe Diagram of the Threat Model

* You can try to prevent an injection or something that extracts the
passwords

* You have to assume that they will get out

* We're going to focus this talk on solutions for thwarting: T1and T3 [T4 is
outside of this discussion, but described below]

* See —jOHN’s PW Storage Green field solution for a complete treatment on
this diagram. T1 - T3 are excepted below

* The difference in terminology between this preso and jOHN’s is that T3 is
referred to as “The Internal Threat” rather than “LAN-based threat”

The following actors participate in this threat model:
[V1] - Active System User : Compromises one’s self through use of the system

Accesses the system normally through a browser
May access the system through a compromised network (exposing them to

Plaintext
* Encrypted

* Hashed (using SHA) CU rrent

* Salt and Hash
. AZapat::/e stshes Ind UStry

* PBKDF

« berypt Practices

* scrypt

Engage the audience to see what they do. Gauge which people (companies) promote

which solution.

The main point of this section is to look at Salt and Hash VS Adaptive Hash

The meta-point about this section is that all of the solutions in this section focus on a

single control-point.

At the end of the section the point will be that Adaptive Hash

* Is more CPU intensive than a more conventional hash and will thus have a negative
impact on scalability

* The notion of slowing down the attacker’s ability to brute force is commendable,
but it’s debatable whether you can find a point that slows down the attacker
enough while still maintaining reasonable CPU efficiency for (concurrent) logins.

* Thus, the hash-and-encrypt solution becomes a “bird in the hand” and the
adaptive hash is a “two in the bush”.

Hash Properties

digest = hash(plaintext);
*—————— '—-—w
Uniqueness

Determinism
Collision resistance
Non-reversibility
Non-predictability
Diffusion

Lightning fast

First to understand the Properties of the Crypto function. The properties will restrict/
influence your design.

SHA-224/256
SHA-384/SHA-512
SHA-3

What property of hashes do these effect?
Collisions. —Was this the problem?
No.

If SHA1 is breakable, then just use a stronger (bigger) hash.

The different variants of SHA-2 vary the output size. The max message size is larger
for SHA-384/SHA-512.

If you believe that there is a collision-based attack (two plaintext hashing to the same
value), then you won’t believe this

Can We Successfully Attack a Hash?

Depends on the threat-actor...

Script-kiddie

AppSec Professional

Well-equipped Attacker

Nation-state B oA

Is the algorithm supported by a
tool?

r .

Reprise or make the point about Threats Actor = Requirements.

For an unsalted hash (which is what an NTLM password is), we can use pre-computed
rainbow tables.

Background on Rainbow tables (from Chandu). Note that this is a just to get you
started in understanding.

---- Begin From Chandu ---

Rainbow tables are generated as "optimized lookup tables" to reverse engineer one-

way hash functions.

Key idea is this -
If | want to reverse engineer a 8-character password (alphanumeric — using
upper and lower case + digits 0-9), then | would generate all possible 8-
character strings and store these strings and their hashes in a table.
If I have a hash, then | can simply do a lookup in this table to find the plaintext
password.

Rainbow tables are optimized
An 8-char password using lower/upper case letters (26+26) and digits (10),
will require us to create (52p8) a table with few trillion rows. You can
compute 52p8.

Rainbow Tables: Fast but Inherent
Limitations

. Passwords with

special

g lengths and complexity
measpnann (135GE) in the white area
alphanum e L (rlga'as) aren’t cracked b)’ the
Rainbow Table

numbers vista_num(3GB)

dictionary based vista_free(461MB)

length | 1-4 5 8 9 10 1 12 13 14 15 16

Source: ophcrack
Tables are crafted for specific complexity and length
|

This graphic is from the ophcrach project on source forge. http://
ophcrack.sourceforge.net/tables.php. What it shows is that RB tables have to be
crafted with inherent limitations of size and valid-character space. Most of the tables
are 99% accurate which means that not all passwords can be cracked with the table.

But, how many passwords do | need? All of them or just some of them?

Table Sizes

Search Space Lookup Table Rainbow Table

P (Brute Force) (NTLM hashes)
30 d7i'c?-?oon\;vr(;rd 16 MB 461 MB
(a-z | A-Z | 0-9)* 338 MB 8.0 GB
(a-z | A-Z | 0-9)° 21 GB 8.0 GB
(a-z | A-Z | 0-9)6 1.3TB 8.0 GB
(a-z | A-Z | 0-9) 87 TB 8.0 GB
(a-z | A-Z | 0-9) 5,560 TB 134.6GB
(a-z | A-Z | 0-9)° 357,000 TB No table
(a-z | A-Z | 0-9)%© 22,900,149 TB No table

Lookup table generates all possible combinations. The RB tables are about 99%
accurate, but are limited in terms of the sizes and complexity of the passwords. They
are, however, faster and most space efficient than a pure look up table.

“No Table” means that ophcrack doesn’t have a pre-calculated table — doesn’t mean
that one can’t be generated

What Does the Salt Do?

salt || digest = hash(salt || plaintext);

De-duplicates digest texts
Adds entropy to input space*

V'
Ili !..
= PO
Y

® increases brute force time

® requires a unique table per user 1

<What is the difference between “brute force” and “rainbow table”? Seems like the
solution for breaking the salted hash is always a table and the question is whether
once can pre-compute the table and store it or whether a per-user-table must be

generated on the fly.>

- "" \

Can salted hashes be Attacked?

Depends on the threat-actor...
e Script-kiddie P 5
® Some guy
e Well-equipped Attacker
® Nation-state
Attacking a table of salted

hashes means building a
Rainbow Table per user

For a Salted Hash we have to use dynamically generated tables: one per salt.

How “well-equipped” is “well-equipped”?

Per User Table Building

Brute Force Time for SHA-1 hashed,
mixed-case-a alphanumeric password

8 Characters 9 Characters
Attacking a single NVS 4200M GPU
hash (32 M/sec) (Dell Laptop) 80 days 13 years
Attacking a single o
hash (85 M/sec) $169 Nvidia GTS 250 30 days 5 years
Attacking a single {$325 ATl Radeon HD
hash (2.3 B/sec) 5970 1day 68 days

These numbers were generated using InsiderPro’s PasswordPro password recovery
program. Prices are from Amazon on 10/4/2012.

The point is that with cheap hardware, it’s possible to get generating enough hashes
per second to realistically brute force a password table protected with salted-SHA1.
If you combine using a Rainbow Table tool which uses fewer hashes the numbers
only get better.

Justin White generated the data on his laptop. Without getting into a treatise about
number of instructions needed to execute the hash operation and intricacies about
which operations are available on the processor... All of the performance data is
anecdotal. There are some clips that | found below, but the point is that it’s doable
and with more money an attacker can construct a machine to using off-the-shelf
hardware and tools from the Internet.

THe ATI Radeon HD is not at the top performer. It's an acceptable performing card.
(http://www.videocardbenchmark.net/high_end_gpus.html)

---- Anecdotal discussions about how many hashes can be done per second ---
| have once made some experiences with SHA-1. A simple password hash with SHA-1
has the cost of processing a single "block" (SHA-1, like MD5, processes data by 64-

Algorithms designed specifically
to remove the “lightning-
fast” property of hashes

Thus: protecting passwords Ada ptive

from Brute Force and
Rainbow Table attacks

Adaptive Hashes increase the H a S h e S

amount of time each hash
takes through iteration

For an on-line attack, we can thwart T1 by increasing the time between tries. We can
“Wait” for 1 second.

Adaptive Hashes are an off-line attack thwarting mechanism, but the problem is that
there is no “wait”; there is only increased computation time.

“The added computational work makes password cracking much more difficult, and is
known as key stretching. “ — wikipedia (PBKDF2)

e Y
=3

PW-Based Key Derivation (PBKDF)

salt || digest = PBKDF(hmac, salt, pw, c=);
g T —————

Licati _,
Application Code Well-supported & vetted

salt = random.getBytes (8)
c = 10000000 .
HMAC key is password
key = pbkdf2(salt, pw, c,)
protected pw = concat (salt, key) Attacker has all entropy
Underlying implementation: What iS the r|ght ‘C’?
pbkdf2 (salt, pw, c, b){
r = computeNumOutputBlock (b) . NIST‘ 1000
md[1] = SHAL-HMAC(p, s || 1))
for (i=2; i <= c¢; i++) .
md[i] = SHAL-HMAC (p, md[i-1]) * i0S4: 10000
for (j=0; j < b; j++) .
kp[3] = xor (md[1] || md[2]..md (5] * Modern CPU: 10000000
dk, = concat(kp[1l] || kp[2] ... kp(r])
return dk, #*SIMPLIFED Code: see |[EEE RFC2898 for details
} See Java JCE Documentation for details on Java API

* PBKDF says that it can be any Pseudo Random Function (PRF), but the
implementation of PBKDF2 only supports HMAC-SHA1
* Signature Parameters:
PRF is a pseudorandom function of two parameters with output length hlen (e.g. a
keyed HMAC)
Password is the master password from which a derived key is generated
Salt is a cryptographic salt
c is the number of iterations desired
dkLen is the desired length of the derived key (length in bits)
DK is the generated derived key
* Invocation Actuals
* HMAC-SHA-1 — (only PRF implemented by default Java JCE)
* password — password
* salt—salt
* i0S4 uses 10,000
* 160 - SHA-1 generates 160 bit hashes

NOTE that PBKDF was designed to generate a key for password-based crypto; the
implication is that it’s not designed to be executed at scale. From RFC 2898:
“A key derivation function produces a derived key from a base key and other
parameters. In a password-based key derivation function, the base key is a

bcrypt

c|| salt || digest = bcrypt(salt, pw, c=);
 EEe—— ————————

Application Code: Not supported by JCE
salt = bcrypt.genSalt (12)

c = 10000000

2°0st jterations slows hash

c, salt, key operations

protected pw

bcrypt (salt, pw, c)
concat (¢, salt, key)

Is 212 enough these days?

Underlying implementation: What effect does Changing
bcrypt (salt, pw, c){ Cost have on DB?
d = “OrpheanBeholderScryDoubt”

keyState = EksBlowfishSetup(c, salt, pw) "

! o ’ Outputting ‘c’ helps
for (int i=0, i < 64,i++){
|7 prowmen(reystate, @) Resists GPU parallelization,

but not FPGA

return c || salt || d

}

FPGA — Field Programmable Gate Array — In short programmable hardware.
2*¥*12 =4096

Parallelism is the key thing for the attacker.

BACKGROUND/REFERENCE:

1. Niels Provos and David Maziéres, The OpenBSD Project http://static.usenix.org/
events/usenix99/provos/provos.pdf
1. A bit unfathomable, but this pseudo-code was enlightening. cost is used
in the setup of Blowfish. It’s a power of 2
bcrypt (cost, salt, pwd)
state = EksBlowfishSetup (cost, salt, key)
ctext ="OrpheanBeholderScryDoubt"
repeat (64)
ctext = EncryptECB (state, ctext)
return Concatenate (cost, salt, ctext)
EksBlowfishSetup (cost, salt, key)
state = InitState ()
state = ExpandKey (state, salt, key)

N
s

scrypt

salt || digest = scrypt(salt, pw, N, r, p, dkLen);

R ——— ————
Application Code: .
TR Packages emerging, well-
r=38 trodden than bcrypt

P =1

Key=scrypt (salt, pw, N, p, dkLen){ Designed to defeat FPGA
protected pw = concat(salt, key) attacks

Underlying implementation: .

ey o [G & Configurable

fc 0, i < pl, it++)

ror (ie0y L<pt, e e N = CPU time/Memory

bLL] - (b1i1, W) - footprint
\ DF2 (pw, b[1]]|b[2]]||.b[p-1], 1, dkLen)

e = block size

e P = defense against
parallelism

***DRAMATICALLY SIMPLIFED Code:
} See scypt by C. Percival
BlockMix(r, b) (/* Chain Salse20(b) over r) */ } RescrypakdOlioseisonlioRSES:

scrypt is the next step in the “use more resources” line of password protection
algorithms. Not a lot to say here except that it’s even slower than bcrypt.

Q to audience: Does that make it better? (This is a setup for the next slide)

From Wikipedia:
The scrypt function is specifically designed to hinder such attempts by raising
the resource demands of the algorithm. Specifically, the algorithm is designed
to use a large amount of memory compared to other password-based KDFs,
making the size and the cost of a hardware implementation much more

expensive, and therefore limiting the amount of paralleling an attacker can
use (for a given amount of financial resources).

BACKGROUND/REFERENCES

Parameters (from the Standard)
Input:
* P Passphrase, an octet string.
* S Salt, an octet string.
* r Block size parameter.
* N CPU/Memory cost parameter, must be larger than 1, a power of 2 and

Adaptive Hash Properties

Motivations Limitations

Resists most Threats’ attacks 1. Top priority is convincing SecArch

. * C=1 == definition of i i
. Concerted (natlon-state) C=10,000,000 definition of insanity

can succeed w/ HW & time ® May have problems w/ heterogeneous arches

Simple implementation
P P 2. API parameters (c=) != devops

Scale CPU-d ifﬁCU|ty W/ e Must have a scheme rotation plan

arameter*
P 3. Attain asymmetric warfare

e Attacker cost vs. Defender cost

4. No password update w/o user

DEAL WITH MEAINTANCE CPU, Architect, and other problems

Defender

Goal:
Log user in w/out > 1sec delay

Rate: 20M Users, 2M active / hr.
Burden:
validation cost * users / (sec/ hr.)

Hardware:
4-16 CPUs on App Server
2-64 servers

Success Gauge :
of machines required for AuthN

Defender VS Attacker

Attacker

Goal(s vary):
Crack a single password, or particular password

Create media event by cracking n passwords

Rate: Scales w/ Capability
Burden:
Bound by PW reset interval
Population / 2 = average break = 10M

Hardware: Custom: 320+ GPUs / card, FPGA

Success Gauge: Days required to crack PW (ave)

Keep cost asymmetric: assure attacker cost greater than defender’s

20

Tradeoff Threshold

Machines Required to Conduct Login Days (average) Until Attacker Gets PW
(@ full load) 800

Days 'il Ave Success
Defender Machines

* Is more than 8 AuthN machines reasonable?
* Is less than 2 months to average crack good enough?

Keep cost asymmetric: assure attacker cost greater than defender’s
|

21

Adaptive Hashes At Best
Strengthen a Single
Control Point

We Can Do Better with
Defense In Depth

Requiring a Key
Gains Defense
In Depth

/]

=

Hmac Properties

digest = hash(key, plaintext); :
- '——ﬂ

RER——
Motivations Limitations
Inherits hash properties 1. Protecting key material challenges
developers

* This includes the lightning speed
e Must not allow key storage in DB!!!

Resists all Threats’ attacks 2. Must enforce design to stop T3

e compartmentalization and
* Brute force out of reach P i

® privilege separation (app server & db)
e >= 225 for SHA-2

3. No password update w/o user

4. Stolen key & db allows brute
* AppServer: RMIi Host keystore force

* Requires 2 kinds of attacks

* DB: reporting, SQLi, backup e Rate ~= underlying hash function

23

COMPAT/FIPS Design

version||salt]||digest

?

Browser

Q A{ﬁ
B
Va rowser oL V2 PW Storage _,_ o8
Strut Spri D(Pw)
CP %w saLie
Auth DB Q
T

= hmac(key, version||salt||password) =

Q AppServer g SSI[E

3
T2

Hmac = hmac-sha-256
Version per scheme
Salt per user

Key per site

* Add a control requiring a key
stored on the App Server

* Threats who exfiltrate password
table also needs to get hmac key

24

Just Split the Digest?

No. They're not the same.
* Lacks key space (brute force expansion)
* Steal both pieces with the same technique

* Remember 000002e09%ee4e5a8fcdae7e3082c9d8ec3d304a5 ?

Permanence:code jsteven$ python split_hash_test.py -v 07606374520 -h ../hashes.txt

+ Found ['75AA8FF23C8846D1a79ae7f7452cfb272244b5ba3ce315401065d803'] verifying passwords

+ 1 total matching

Permanence:code jsteven$ python split_hash_test.py -h ../hashes_full.txt -v excallber -c 20
+ Found ['8FF8E2817E174C76b8597181a2ee028664aadff17a32980a5bad898c'] verifying passwords

+ 1 total matching

25

—)

)

<pw digest> =

*———(P—_-
? 5 Apw Ta
rowser
Vi ssL V2

% Browser

T1

Reversible Design

version| |cipher = ENC(wrapper keysite, <pw digest>)

w Struts Spring

D(Pw)

—
N

* ENC = AES-256
« ADAPT = pbkdf2 | scrypt
* Version per scheme

e Salt per user
¢ Key per site

version||salt|| digest = ADAPT(version||saltuser||password)

i

SQLite

AppServer @ SSL | AuthD (P
T3

!

26

<pw digest> = version||salt]|| digest
e ——
Motivations

* Inherits
¢ “compat” solution benefits

* Adaptive hashes’ slowness
* Requires 2 kinds of attacks
* App Server & DB
» Brute forcing DB out of reach (>=2%56)

¢ Stolen key can be rotated w/o user
interaction

» Stolen DB + key still requires reversing

Reversible Properties

version||cipher = ENC(wrapper keysite, <pw digest>)

= ADAPT(version||saltuser||password)
.—__“
Limitations

1. Protecting key material challenges
developers

1. Must not allow key storage in DB!!!

2. Must enforce design to stop T3
1. compartmentalization and

2. privilege separation (app server & db)
3. No password update w/o user

4. Stolen key & db allows brute force

1. Rate ~= underlying adaptive hash

27

MOST IMPORTANT
TOPIC

Responding once attacked

Operations

28

Replacing legacy PW DB

1. Protect the user’s account

Invalidate authN ‘shortcuts’ allowing login w/o 2" factors or secret questions

Disallow changes to account (secret questions, OOB exchange, etc.)
2. Integrate new scheme

* Hmac(), adaptive hash (scrypt), reversible, etc.

Include stored with digest

3. Wrap/replace legacy scheme: (incrementally when user logs in—-#4)

version||salt,,||protected = scheme,, (salt,,, digest,;..,) —Or—
® For reversible scheme: rotate key, version number

4. When user logs in:
1. Validate credentials based on version (old, new); if old demand 2" factor or secret answers
2. Prompt user for PW change, apologize, & conduct OOB confirmation

3. Convert stored PWs as users successfully log in

29

Thank Yog for Your _
Time Questions

30

Conclusions

* Without considering specific threats, the solutions
misses key properties

* Understanding operations drives a whole set of
hidden requirements

* Many solutions resist attack equivalently

. Ada}ptive hashes impose on defenders, affecting
scale

* Leveraging design principles balances solution
* Defense in depth
* Separation of Privilege
* Compartmentalization

31

TODO

* Revamp password cheat sheet

* Build/donate implementation
1. Protection schemes
2. Database storage
3. Key store < Vital to preventing dev err
4., Password validation

5. Attack response

32

Additional Material for .
longer-format Supporti ng

presentations SI | d es

Select Source Material

Trade material

Password Storage Cheat Sheet Applicable Regulation, Audit, or Special Guidance

Cryptographic Storage Cheat Sheet . COBIT DS 5.18 - Cryptographic key management

PKCS #5: RSA Password-Based Cryptography . Export Administration Regulations ("EAR") 15 C.F.R.
Standard
O NIST SP-800-90A
Guide to Cryptography
Future work:
Kevin Wall’s_Sians of broken auth (& related posts)
O Recommendations for key derivation NIST SP-800-132
John Steven’s Securing password digests

© Authenticated encryption of sensitive material:

Graham-Cumming 1-way to fix your rubbish PW DB NIST SP-800-38F (Draft)
IETF RFC2898
Other work

Spring Security, Resin
jascrypt

Apache: HTDigest, HTTP Digest Specification, Shiro

34

Threat Actors

Threat Actor Attack Vector
[T1] External Hacker AVO - Observe client operations

AV1 - Inject DB, bulk credentials lift
AV2 - Brute force PW w/ AuthN API
AV3 - AppSec attack (XSS, CSRF)
AV4 - Register 2 users, compare
[T2] MiM AV1 - Interposition, Proxy
AV2 - Interposition, Proxy, SSL
AV3 - Timing attacks
[T3] Internal/Admin AV1 - Bulk credential export
AV2 - [T1] style attack
AV3 - Direct action w/ DB

These are the threat actors, but we only care about a subset of these Threats for the
purpose of this talk.

I\

Stored Passwords Requirements

Threat Actor Attack Vector
[T1] External Hacker

AV1 - Inject DB, bulk credentials lift

AV4 - Register 2 users, compare

[T3] Internal/Admin AV1 - Bulk credential export
Attack Vectors should be
AV2 - [T1] style attack broken out by 1)

AV3 - Direct action w/ DB acquisition of PW DB
/ and 2) reversing the DB.

We're going to look at just the secure storage requirements part of the overall
solution. Threat T2 and the grey-ed out attacks for T1 are in-scope for the overall
application, but are not germane to the issue of storage. T1-AV1 and T3-AV1 are
germane because it’s through AV1 that the threat gets the password table.

<mixed construct>
* HMAC

* keysite

* saltuyser

* PWuser

Optional:
* <mixed construct>
* GUID

user

COMPAT/FIPS Solution

<versionscheme> | |<saltuser> | |<digest> := HMAC(<keysite>, <mixed construct>)
= <versionschene> | | <saltuser> | | <pwuser>

hmac-sha256

PSMKeyTool (SHA256()):32B;
SHA1PRNG():32B | FIPS186-2():32B;
<governed by password fitness>

<versionscheme> l I <saltuser> I I G | | <GUIDuser> I | <PWuser>
NOT username or available to untrusted zones

37

hmac Solution Properties

1.1 Resist chosen plain text attacks Yes, Scheme complexity based on (saltu. & pwe) + keys.
1.2 Resist brute force attacks Yes, Key, = 22%, salt ., = 2256

1.3 Resist D.o.S. of entropy/randomness exhaustion Yes, 32B on password generation or rotation

1.4 Prevent bulk exfiltration of credentials Implementation detail: <various>

1.5 Prevent identical <protected>(pw) creation Yes, provided by salt

1.6 Prevent <protected>(pw) w/ credentials Yes, provided by Key;,

1.7 Prevent exfiltration of ancillary secrets Implementation detail: store Key,;. on application server
1.8 Prevent side-channel or timing attacks N/A

1.9 Prevent extension, similar Yes, hmac() construction (i_pad, o_pad)

1.10 Prevent multiple encryption problems N/A (hmac() construction)

1.11 Prevent common key problems N/A (hmac() construction)

1.12 Prevent key material leakage through primitives Yes, hmac() construction (i_pad, o_pad)

<describe the solution properties>
The problem is that it’s difficult to rotate the key.

Attacker/Defender Workshee

Attacker Speedup 2

Average Pop. Vielding success 10000000
Defender CPU

Defender work (/ sec) 556

Seconds Defender Machines Days 'til Ave Success
035

06

0.05 174 29
01 3.47 5.8
015 521 87
02 694 16
025 268 s
03 1042 174
035 1215 203
04 13.89 221
0.45 15.63 26.0
05 17.36 289
055 19.10 EiE
06 20.83 47
065 22557 376
07 2431 405
075 26.04 434
08 27.78 463
0.85 2051 49.2
09 3125 521
095 32.99 55.0
1 3472 57.9
105 36.46 60.8
11 38.19 63.7
115 39.93 6.6
12 a167 69.4
125 a3.40 723

800

600

500

Detender Machines
s000
500

000

3000
2500

Days 'til Ave Success w000

o ===Days 'til Ave Success.

m=Defender Machines

39

(More) Just Split the Digest

Comparing 20B PBKDF2 chunks created no collisions

$ re asswords ..
No spurious hit G .

: jsteven$ python split_hash_test.py -v passwords -h ../hashes.txt
Worst-case:

20B chunk = 50/50 split + Found [] matching passwords
Permanence: jsteven$ python split_hash_test.py -h ../hashes_full.txt -v‘excallber -c 20

+ Found 1 ['8FF8E2817E174C76b8597181a2ee028664aadff17a32980a5bad898c' | matching passwords

* 2,150,710 uniquely

salted hashes Found 1 ['4F10C870B4E94F814fd07046b8d3bea650073e564c39596b8990d74b"'] matching passwords

+ 16 byte sale Found 1 ['EBD19B279CC64554F83F485706073Fab5al12ea63143ec82a37e6d41’ | matching passwords
Found 1 ['A4575F1E7D4C41DEc@aed49c5ced48cedad9dbe28b9e87635e7289eb7eb'] matching passwords

* passwords Found 1 ['E1301662EC6349E5021c4cd8c158533aa9342ddeed52f74F321ea0fa'] matching passwords
* mp3download
+ REDROOSTER Found 1 ['72532DBFBF954FA1d9a068690ed1c3fc@9459932bed6bad5af4el1453'] matching passwords
* Dragoné9 Found ['@43EAF3FE8434630d9d513284835c0891f0fbfcbeaflf6bb6f76bcO6'] matching passwords
* 07606374520 . , .
+ brazerl Found ['636BEF93F99449114785304641419d450ce24ddfa@3f4383e7593e6'] matching passwords
* Bigwheell8 Found ['A66772BEAF7A47361f6929611cc24b92b86cb84403c7773996ac49bc'] matching passwords
* Mastodonl
. Marthala Found ['8C8066C40C224A6700c50395afald3a87c9b76a1215193a29226e170"] matching passwords
* screaming36! Found ['AD1@ESDF1D23435163457052e8433cc6@aada853ee13143db90bo456'] matching passwords

40

