ENEE 459-C Computer Security

Public key encryption

(continue from previous lecture)

Euclid's GCD Algorithm

 Euclid's algorithm for computing the GCD repeatedly applies the formula

```
gcd(a, b) = gcd(b, a \mod b)
```

- Example
 - $\gcd(412, 260) = 4$

```
Algorithm EuclidGCD(a, b)
Input integers a and b
Output gcd(a, b)

if b = 0
return a
else
return EuclidGCD(b, a mod b)
```

a	412	260	152	108	44	20	4
b	260	152	108	44	20	4	0

Proof of correctness

```
Algorithm EuclidGCD(a, b)
Input integers a and b
Output gcd(a, b)

if b = 0
return a
else
return EuclidGCD(b, a mod b)
```

- We need to prove that $GCD(a,b)=GCD(b,a \mod b)$
- FACTS
 - Every divisor of \mathbf{a} and \mathbf{b} is a divisor of \mathbf{b} and $(\mathbf{a} \mod \mathbf{b})$: This is because $(\mathbf{a} \mod \mathbf{b})$ can be written as the sum of \mathbf{a} and a multiple of \mathbf{b} , i.e., $\mathbf{a} \mod \mathbf{b} = \mathbf{a} + k\mathbf{b}$, for some integer k.
 - Similarly, every divisor of b and (a mod b) is a divisor of a and b: This is because a can be written as the sum of (a mod b) and a multiple of b, i.e., a = kb + (a mod b), for some integer k.
 - Therefore the set of all divisors of a and b is the same with the set of all divisors of b and (a mod b). Thus the greatest should also be the same.

Multiplicative Inverses (1)

The residues modulo a positive integer n are the set

$$Z_n = \{0, 1, 2, ..., (n-1)\}$$

• Let x and y be two elements of Z_n such that

$$xy \mod n = 1$$

We say that y is the multiplicative inverse of x in Z_n and we write $y = x^{-1}$

- Example:
 - Multiplicative inverses of the residues modulo 11

										10
x^{-1}	1	6	4	3	9	2	8	7	5	10

Multiplicative Inverses (2)

Theorem

An element x of Z_n has a multiplicative inverse if and only if x and n are relatively prime

- Example
 - The elements of Z_{10} with a multiplicative inverse are 1, 3, 7, 9

Corollary

If is p is prime, every nonzero residue in \mathbf{Z}_p has a multiplicative inverse

Theorem

A variation of Euclid's GCD algorithm computes the multiplicative inverse of an element x of Z_n or determines that it does not exist

x	0	1	2	3	4	5	6	7	8	9
x^{-1}		1		7				3		9

Computing multiplicative inverses

- Compute the multiplicative inverse of a in Z_b
- Given two numbers a and b, there exist integers x and y such that
 xa + yb = gcd(a,b)
- Can be computed efficiently with the Extended Euclidean algorithm
- To compute the multiplicative inverse of a in Z_b , use the Extended Euclidean algorithm to compute x and y such that xa + yb = 1
- Then x the multiplicative inverse of a in Z_b

Extended Euclidean algorithm

Theorem

Given positive integers a and b, let d be the smallest positive integer such that

$$d = ia + jb$$

for some integers i and j.

We have

$$d = \gcd(a,b)$$

- Example
 - a = 21
 - b = 15
 - d = 3
 - i = 3, j = -4
 - 3 = 3.21 + (-4).15 = 63 60 = 3

```
Algorithm Extended-Euclid(a, b)

Input integers a and b

Output gcd(a, b), i and j

such that ia+jb = gcd(a,b)

if b = 0

return (a,1,0)

(d', x', y') = Extended-Euclid(b, a \mod b)

(d, x, y) = (d', y', x' - [a/b]y')

return (d, x, y)
```

Powers

- Let p be a prime
- The sequences of successive powers of the elements of Z_p exhibit repeating subsequences
- The sizes of the repeating subsequences and the number of their repetitions are the divisors of p-1
- Example (p = 7)

x	x^2	x^3	x^4	x^5	x^6
1	1	1	1	1	1
2	4	1	2	4	1
3	2	6	4	5	1
4	2	1	4	2	1
5	4	6	2	3	1
6	1	6	1	6	1