ENEE 459-C Computer Security

Public key encryption

(continue from previous lecture)

Review of Secret Key (Symmetric) Cryptography

- Confidentiality
 - block ciphers with encryption modes
- Integrity
 - Message authentication code (keyed hash functions)
- Limitation: sender and receiver must share the same key
 - Needs secure channel for key distribution
 - Impossible for two parties having no prior relationship
 - Needs many keys for n parties to communicate

Concept of Public Key Encryption

- Each party has a pair (K, K⁻¹) of keys:
 - K is the **public** key, and used for encryption
 - K⁻¹ is the **private** key, and used for decryption
 - Satisfies $D_{K^{-1}}[E_K[M]] = M$
- Knowing the public-key K, it is computationally infeasible to compute the private key K⁻¹
 - Easy to check K,K⁻¹ is a pair
- The public-key K may be made publicly available, e.g., in a publicly available directory
 - Many can encrypt, only one can decrypt
- Public-key systems aka *asymmetric* crypto systems

Public Key Cryptography Early History

- Proposed by Diffie and Hellman, documented in "New Directions in Cryptography" (1976)
 - 1. Public-key encryption schemes
 - 2. Key distribution systems
 - Diffie-Hellman key agreement protocol
 - 3. Digital signature
- Public-key encryption was proposed in 1970 in a classified paper by James Ellis
 - paper made public in 1997 by the British Governmental Communications Headquarters
- Concept of digital signature is still originally due to Diffie & Hellman

Public Key Encryption Algorithms

- Almost all public-key encryption algorithms use either number theory and modular arithmetic, or elliptic curves
- RSA
 - based on the hardness of factoring large numbers
- El Gamal
 - Based on the hardness of solving discrete logarithm
 - Use the same idea as Diffie-Hellman key agreement

Facts About Numbers

- Prime number p:
 - *p* is an integer
 - **p** ≥ 2
 - The only divisors of *p* are 1 and *p*
- Examples
 - 2, 7, 19 are primes
 - -3, 0, 1, 6 are not primes
- Prime decomposition of a positive integer n:

$$\boldsymbol{n} = \boldsymbol{p}_1^{\boldsymbol{e}_1} \times \ldots \times \boldsymbol{p}_k^{\boldsymbol{e}_k}$$

- Example:
 - $200 = 2^3 \times 5^2$

Fundamental Theorem of Arithmetic

The prime decomposition of a positive integer is unique

Greatest Common Divisor

- The greatest common divisor (GCD) of two positive integers *a* and *b*, denoted gcd(*a*, *b*), is the largest positive integer that divides both *a* and *b*
- The above definition is extended to arbitrary integers
- Examples:

gcd(18, 30) = 6 gcd(0, 20) = 20gcd(-21, 49) = 7

- Two integers a and b are said to be relatively prime if gcd(a, b) = 1
- Example:
 - Integers 15 and 28 are relatively prime

Modular Arithmetic

Modulo operator for a positive integer n
r = a mod n
equivalent to

$$a = r + kn$$

and

$$r = a - \lfloor a/n \rfloor n$$

- Example:
 - 29 mod 13 = 313 mod 13 = 0 $-1 \mod 13 = 12$ 29 = 3 + 2 \times 13 $13 = 0 + 1 \times 13$ $12 = -1 + 1 \times 13$
- Modulo and GCD:

$$gcd(a, b) = gcd(b, a \mod b)$$

• Example:

gcd(21, 12) = 3 $gcd(12, 21 \mod 12) = gcd(12, 9) = 3$