ENEE 457: Computer Systems Security
09/10/18

Lecture 4
Symmetric Crypto i

Charalampos (Babis) Papamanthou

Department of Electrical and Computer Engineering
University of Maryland, College Park

*Shides adjusted from:
* http://dziembowski.net/Teaching/BISS09/

©2009 by Stefan Dziembowski. Permission to make digital or hard copies of part or all of
this material is currently granted without fee provided that copies are made only for
personal or classroom use, are not distributed for profit or commercial advantage, and
that new copies bear this notice and the full citation.

Message Authentication

Integrity:

M

l
interferes with the transmission
(modifies the message, or inserts
a hew one)

Sometimes: more important than
secrecy!

tM

transfer 1000 S to Eve

e

Of course: usually we want both secrecy and integrity.

—»
—>

Does encryption guarantee message integrity?

It does not work!

Example: one-time pad. “Eve” xor “Bob”
olaintext transfer 1000 $ to Bob transfer 1000 $ tm:
keyK
XOor

ciphertext C

Message authentication

verifies if

v

—— (m, t=Tag,(m))

' t=Tag,(m)

1 [
| -
»

Bob A
T
I3

Eve can see (m, t=Tag,(m))

She should not be able to
compute a valid tag t’ on any
other message m’.

Message authentication — multiple
messages

— (m,, t=Tag,(m,;)) —

— (m,, t=Tag,(m,)) —

— (m,, t=Tag,(m,)) ——

Eve should not be able to
compute a valid tag t’ on any
other message m’.

Message Authentication Codes — the
idea

m € {0,1}* rfy,(m) e {yes,no}

A mathematical view

% —Kkey space
M — plaintext space
T - set of tags

A MAC scheme is a pair (Tag, Vrfy), where
Tag: K x M = T is an tagging algorithm,
Ver: K x M x T - {yes, no} is an decryption algorithm.

We will sometimes write Tag,(m) and Vrfy,(m,t) instead of
Tag(k,m) and Vrfy(k,m,t).

Correctness

it should always holds that:
Vrfy,(m,Tag,(m)) = yes.

How to define security?

We need to specify:

1. how the messages m,,....m are chosen,

2. what is the goal of the adversary.

Good tradition: be as pessimistic as possible!

10

m1 >

adversary

— (my,t=Tag(m,)) — o |
! oracle

v

m

w

— (m, t=Tag,(m,)) ——

We say that the MAC scheme is secure if at the end the adversary
cannot output (m’,t’) such that
Vrfy(m’,t’) = yes
and
m’ £m,,...,m

w

11

Aren’t we too paranoid?

Maybe i1t would be enough to require that:

the adversary succeds only if he forges a message that
“makes sense”.

(e.g.: forging a message that consists of random noise should
not count)

Bad idea: ~
©®©

 hard to define,

* 1s application-dependent.

Warning: MACs do not offer protection against
the “replay attacks”.

13

Authentication and Encryption

Usually we want to authenticate and encrypt at the same time.
What is the right way to do it? There are several options:

Encrypt-and-authenticate:

¢ <— Enc(m) and t<« Mac,,(m) wrong
. Authenticate-then-encrypt:
t <— Mac,,(m) and c¢ < Enc(m]||t) better

Encrypt-then-authenticate:

¢ — Enc,,(m) and t <« Mac, (c) the best

By the way: never use the same key for Enc and Mac:
k, and k, have to be “independent”!

14

Constructing a MAC

. MAC:s can be constructed from the block-ciphers.
We will now discuss to constructions:

* simple (and not practical),
e a little bit more complicated (and practical) —a CBC-MAC

. MACs can also be constructed from the hash functions

(NMAC, HMAC).

15

A simple construction from a block

cipher

Let
F:{0,13" x {0,1}" — {0,1}"

be a block cipher.

We can now define a MAC scheme that
works only for messages m € {0,1}" as
follows:

* Mac(k,m) = F(k,m)

It can be proven that it is a secure MAC.

How to generalize it to longer messages?

16

Idea 1

e divide the message in blocks mg,...,m,
e and authenticate each block separately

This doesn’t work!

17

What goes wrong?

m
t=Tgm: T

m’ = perm(m): |
t=perm(t): RN MMHHHHHhneeees

Then t’ is a valid tag on m’.

Idea 2

Add a counter to each block.

-~ /

This doesn’t work either!

-

"

19

Then t’ is a valid tag on m’.

|
t = Tag,(m): ,

AN\

m’ = a prefix of m: :

|
t’ = a prefix of t: I

HiIlmiere

20

Idea 3

Add € := |m| to each block

-~ /

-
"

This doesn’t work either!

21

¢ 1 m,
. J
X
What goes wrong?
m: | m’:
I
t = Tag,(m): l t’ = Tag.(m’):

m’’ = first half from m || second half from

MMM

MMM

%

t”” = first half from t | | second half from t’

Then t”’ is a valid tag on m”’.

Idea 4

Add a fresh random value to each block!

-~ /

-

"

This works!

23

r is chosen randomly

tag,(m)

24

This construction can be proven
secure

Theorem

Assuming that
F:{0,1}"x {0,1}" — {0,1}" 1s a pseudorandom permutation

the construction from the previous slide is a secure MAC.

25

This construction is not practical

We can do much better!

26

CBC-MAC

F:{0,1}" % {0,1}" = {0,1}" - a block cipher

B

Other variants exist!

B

27

Why is this needed?

Suppose we do not prepend |[m]|...

28

the adversary
chooses:
L L

@

now she can
compute:

29

Some practictioners don’t like the
CBC-MAC

We don’t want to authenticate using
the block ciphers!

What do you want to use instead?

Hash functions!

Why?

Because they are more efficient

30

Another idea for authenticating long messages

Fi(h(m])

© athashfunctio’h

long m

31

How to formalize it?

We need to define what is a “hash function”.
The basic property that we require is:

“collision resistance”

Collision-resistant hash functions

short H(m)

a hash function
H:{0,1}* - {0,1}!

long m

collision-resistance a “collision”

Requirement: it should be hard to find a pair (m,m’) such that
H(m) =H(m’)

Collisions always exist

Since the domain is
larger than the range the
collisions have to exist.

34

“Practical definition”

H 1s a collision-resistant hash function 1f it 1s “practically
impossible to find collisions in H”.

Popular hash funcitons:

* MDS5 (now considered broken)
« SHA1

A common method for constructing
hash functions

Construct a “fixed-input-length” collision-resistant hash
function
f— L —

h(m)

h:{0,1}*t > {0,1}*

m

Call it: a coltision-resistant coit h.

Use i1t to construct a hash function.

An idea

|« t

pad with zeroes
if needed

‘ i i i m, € {0,1}!

can be arbitrary

This doesn’t work...

37

Why is it wrong?

m 0000

If we setm’=m || 0000 then H(m’) = H(m).

Solution: add a block encoding “t”.

l¢ t >l
< >

m 0000

38

Merkle-Damgard transform

given h: {0,1}** - {0,1}" doesn’t need to be
we construct H : {0,1}*- {0,1}*

know in advance

(nice!)
t Rt
m 0000
AL m, m Mg,; =t
m. € {0,1}!
h h h h
o) o) m) e

39

This construction is secure

We would like to prove the following:

heoren

h:{0,1}** - {0,1}}
is a collision-resistant compression function
then

If

H:{0,1}*-> {0,1}!
is a collision-resistant hash function.

40

Let’s prove it: How to compute a collision
(x,y) in h from a collision (m,m’) in H?

We consider two options:

1. |m| = |m’]

2. [m|#[m’l

41

Option 1: m| = |m’|

Some notation:

Form’:

45

46

S0, we have found a collision!

< equal >
1 Zis_ < not equal > m’ 4

Option 2:

m| # [m’|

H(m)

< equal

mB+1 zB+1

H(m’)

’
Mgy

4
Zpy

the last block encodes

the length on the message

so these values
cannot be equal!

So, again we have found a collision!

48

Generic attacks on hash functions

Remember the brute-force attacks on the encryption schemes?
For the hash functions we can do something slightly smarter...

It 1s calle

49

The birthday paradox

Suppose we have a random function

H:A—B
Take n values
X{geees X))
Let p(n) be the probability that there exist distinct i,j such that
H(x;) = H(x;).

If n = |B| then trivially p(n) = 1.

Question: How large n needs to be to get p(n) = 1/2

Answer: n~./|B|

Why is it called “a birthday paradox”?

Set:

H : people — birthdays

Counterintuitive...

51

How does the birthday attack work?

For a hash function
H: {0,1}* — {0,1}"

Take a random X — a subset of {0,1}?", such that |X| = 21/2,

With probability around 0.5 there exists x,x’ € X, such that
H(x) = H(X’).

A pai(r) 8&),{)6) can be found in time O(|X| log |X|) and space

Moral
L has to be such that an attack that needs 2/ steps is infeasible.

52

Find collisions for crypto-hashes?

The brute-force aims at finding a collision for a cryptographic function h with domain [1,2,...,m]
* Randomly generate a sequence of plaintexts X, X,, X;,...
* For each X compute y; = h(X;) and test whether y; = y; for some j <1

* Stop as soon as a collision has been found

» If there are m possible hash values, the probability that the i-th plaintext does not collide with any of the previous i —1
plaintexts is 1 — (i— 1)/m

* The probability F, that the attack fails (no collisions) after k plaintexts is
F,=(1-1m)(1-2/m)(1-3/m)...(1—-(k—1)/m)
» Using the standard approximation 1 —x = e™*
F ~ e (Vm+2/m+3m+ .+ (1)) = gok(k=1)/2m
* The attack succeeds with probability p when F, =1 —p, that is,
ekk-D2m = | _

* Forp=1/2

k~1.17 m”

* Form =365, p=1/2, k 1s around 24

Birthday attack

1
T 0.9 | .
© 0.8
© 0.7 L .

06| |
>0.5 ¢ :
= 0.4 |]
2 0.3

Q02|)
01l)

o= 0 23 | | | | |
O 10 20 30 40 50 60 70 80 90 100

Number of people

Concrete functions

all use (variants of) Merkle-Damgard transformation.

Hash functions can also be constructed using the number theory.

55

MDS (Message-Digest Algorithm 35)

: 128 bits,
by Rivest in 1991,

. i\I/l[]1)%96, Dobbertin found collisions in the compresing function of

* in 2004 a group of Chinese mathematicians designed a method
for finding collisions in MDS5,

* there exist a tool that finds collisions in MDS with a speed

Is MDS completely broken?

The attack would be practical if the colliding documents “made
sense”...

In 2005 A. Lenstra, X. Wang, and B. de Weger found
certificates with different puf)hc keys and the same MDS hash.

56

SHA-1 (Secure Hash Algorithm)

* output length: 160 bits,
* designed 1in 1993 by the NSA,

* 1n 2005 Xiaoyun Wang, Andrew Yao and Frances
Yao presented an attack that runs in time 2.

* Still rather secure, but new hash algorithms are
needed!

A US National Institute of Standards and
Technology is currently running a competition for a
new hash algorithm.

57

SHA-2 overview

- N P24 hits "
124 hifs
- L bits - -
Message 1000000 .. .0 | L

M M;
¥ ¥
BT
k J k J
v=Hy| [H H,
512 hits 512 hits 512 hits

=+ =word-by-word additicn mod 24

bt—— J124 hits ——

What the industry says about the
“hash and authenticate” method?

the block cipher is still there...

Why don’t we just hash a message
together with a key:
MAC,(m) =H(k | | m)

?

/N J\ It’s not secure!
® @

Suppose H was constructed using the MD-

MAC,(m)
t Zg
m z,
k \Y

— L —

t+1L

MAC,(m] |t)

MAC,(m)

IV

60

A better idea

M. Bellare, R. Canetti, and H. Krawczyk (1996):

* NMAC (Nested MAC)
« HMAC (Hash based MAC)

have some “provable properties™

They both use the Merkle-Damgard transform.

Again, let h : {0,1}** = {0,1}* be a compression function.

61

63

HMAC

k xor ipad H

m,

|vq

h

\

=)

h

IV

k xor opad

ipad = 0x36 repeated
opad = 0x5C repeated

hﬂh-

HMAC — the properties

Looks complicated, but 1t 1s very easy to implement
(given an implementation of H):

HMAC, (m) = H((k xor opad) || H(k xor ipad || m))

It has some “provable properties” (slightly weaker than
NMACQ).

We like it!
Widely used 1n practice.

65

