
ENEE 457: Computer Systems Security
09/10/18

Lecture 4
Symmetric Crypto II

Charalampos (Babis) Papamanthou

Department of Electrical and Computer Engineering

University of Maryland, College Park

•Slides adjusted from:
•http://dziembowski.net/Teaching/BISS09/

©2009 by Stefan Dziembowski. Permission to make digital or hard copies of part or all of
this material is currently granted without fee provided that copies are made only for
personal or classroom use, are not distributed for profit or commercial advantage, and
that new copies bear this notice and the full citation.

3

Message Authentication

Integrity:

M

interferes with the transmission
(modifies the message, or inserts
a new one)

Alice Bob

How can Bob be sure that
M really comes from Alice?

4

Sometimes: more important than
secrecy!

Alice Bank
transfer 1000 $ to Eve

transfer 1000 $ to Bob

Of course: usually we want both secrecy and integrity.

5

Does encryption guarantee message integrity?

Idea:

1. Alice encrypts m and sends c=Enc(k,m) to Bob.

2. Bob computes Dec(k,m), and if it “makes sense” accepts it.

Intuiton: only Alice knows k, so nobody else can produce a valid ciphertext.

It does not work!

Example: one-time pad.

transfer 1000 $ to Bob

key K

ciphertext C

transfer 1000 $ to Eve

“Eve” xor “Bob”

plaintext

xor

6

Message authentication

Alice Bob

(m, t=Tagk(m))

Eve can see (m, t=Tagk(m))

She should not be able to
compute a valid tag t’ on any
other message m’.

k k

m
verifies if
t=Tagk(m)

7

Message authentication – multiple
messages

Alice Bob

(m1, t=Tagk(m1))

Eve should not be able to
compute a valid tag t’ on any
other message m’.

k k

(m2, t=Tagk(m2))m2

m1

(mw, t=Tagk(mw))mt

. . .

. . .

8

Alice Bob

(m, t=Tagk(m))

k k

m є {0,1}*

k is chosen randomly
from some set T

Vrfyk(m) є {yes,no}

Message Authentication Codes – the
idea

A mathematical view

K – key space

M – plaintext space

T - set of tags

A MAC scheme is a pair (Tag, Vrfy), where

 Tag : K × M → T is an tagging algorithm,

 Ver:K × M × T → {yes, no} is an decryption algorithm.

We will sometimes write Tagk(m) and Vrfyk(m,t) instead of

Tag(k,m) and Vrfy(k,m,t).

Correctness

it should always holds that:
Vrfyk(m,Tagk(m)) = yes.

10

Therefore we assume that

1. The adversary is allowed to chose m1,...,mw.

2. The goal of the adversary is to produce a valid tag on
some m’ such that m’ ≠ m1,...,mw.

How to define security?

We need to specify:

1. how the messages m1,...,mw are chosen,

2. what is the goal of the adversary.

Good tradition: be as pessimistic as possible!

11

selects random a k Є {0,1}n

oracle

m1

mw

. . .

(m1, t=Tagk(m1))

(mw, t=Tagk(mw))

We say that the MAC scheme is secure if at the end the adversary
cannot output (m’,t’) such that

Vrfy(m’,t’) = yes
and

m’ ≠ m1,...,mw

adversary

12

Aren’t we too paranoid?

Maybe it would be enough to require that:

the adversary succeds only if he forges a message that
“makes sense”.

(e.g.: forging a message that consists of random noise should
not count)

Bad idea:

• hard to define,

• is application-dependent.

13

Warning: MACs do not offer protection against
the “replay attacks”.

Alice Bob

(m, t)

Since Vrfy has no state (or
“memory”) there is no way to
detect that (m,t) is not fresh!

This problem has to be solved by the higher-level application
(methods: time-stamping, sequence numbers...).

14

Authentication and Encryption

Usually we want to authenticate and encrypt at the same time.

What is the right way to do it? There are several options:

• Encrypt-and-authenticate:

c ← Enck1(m) and t ← Mack2 (m)

• Authenticate-then-encrypt:

t ← Mack2 (m) and c ← Enck1(m||t)

• Encrypt-then-authenticate:

c ← Enck1(m) and t ← Mack2 (c)

By the way: never use the same key for Enc and Mac:

k1 and k2 have to be “independent”!

wrong

better

the best

15

Constructing a MAC

1. MACs can be constructed from the block-ciphers.
We will now discuss to constructions:

• simple (and not practical),

• a little bit more complicated (and practical) – a CBC-MAC

1. MACs can also be constructed from the hash functions
(NMAC, HMAC).

16

A simple construction from a block
cipher

Let

F : {0,1}n × {0,1}n → {0,1}n

be a block cipher.

We can now define a MAC scheme that
works only for messages m Є {0,1}n as
follows:

• Mac(k,m) = F(k,m)

It can be proven that it is a secure MAC.

How to generalize it to longer messages?

Fkk

m

F(k,m)

17

Idea 1

Fk

m1

F(k,m1)

Fk

md

F(k,md)

. . .

• divide the message in blocks m1,...,md

• and authenticate each block separately

This doesn’t work!

18

t = Tagk(m):

m:

t’ = perm(t):

m’ = perm(m):

perm

Then t’ is a valid tag on m’.

What goes wrong?

19

Idea 2

Fk

m1

F(k,x1)

Fk

md

F(k,xd)

. . .

Add a counter to each block.

This doesn’t work either!

1 d

x1 xd

20

xi

m:

t = Tagk(m):

m’ = a prefix of m:

t’ = a prefix of t:

Then t’ is a valid tag on m’.

mii

21

Idea 3

Fk

m1

F(k,x1)

Fk

md

F(k,xd)

. . .

Add l := |m| to each block

This doesn’t work either!

1 dl l

x1 xd

22

What goes wrong?

xi

m:

t = Tagk(m):

m’:

t’ = Tagk(m’):

m’’ = first half from m || second half from m’

t’’ = first half from t || second half from t’

Then t’’ is a valid tag on m’’.

m1 1l

23

Idea 4

Fk

F(k,x1)

Fk

md

F(k,xd)

. . .

Add a fresh random value to each block!

This works!

dl

x1 xd

rmddlr

24pad with zeroes if needed

Fk

F(k,x1)

m

1lr

Fk

F(k,x2)

m22r

Fk

F(k,xd)

mddr

m1 m2 md
. . .

. . .

. . .

m1

l

ll

x1
x2 xd

r is chosen randomly

r

tagk(m)

000

25

This construction can be proven
secure

Theorem

Assuming that

F : {0,1}n × {0,1}n → {0,1}n is a pseudorandom permutation

the construction from the previous slide is a secure MAC.

26

Problem:

The tag is at least as big as the message...
But we do not need to decrypt, just to verify

This construction is not practical

We can do much better!

27

CBC-MAC

m

m1 m2 m3 md
. . .

pad with zeroes if needed

0000

|m|

Fk Fk Fk Fk Fk

tagk(m)

F : {0,1}n × {0,1}n → {0,1}n - a block cipher

Other variants exist!

28

m1 m2 m3 md
. . .

|m|

Fk Fk Fk Fk Fk

Why is this needed?

Suppose we do not prepend |m|...

tagk(m)

29

m1

Fk

t1=tagk(m
1)

m2

Fk

t2=tagk(m
2)

m1 m2 xor t1

Fk Fk

t’= tagk(m’)

m’

t’ = t2

t1

the adversary
chooses:

now she can
compute:

30

Some practictioners don’t like the
CBC-MAC

We don’t want to authenticate using
the block ciphers!

What do you want to use instead?

Because they are more efficient

Why?

Hash functions!

31

Another idea for authenticating long messages

a “hash function” h

h(m)

long m

a block cipher
Fk

k

Fk(h(m))

How to formalize it?

We need to define what is a “hash function”.

The basic property that we require is:

“collision resistance”

33

Collision-resistant hash functions

a hash function
H : {0,1}* → {0,1}L

short H(m)

long m

Requirement: it should be hard to find a pair (m,m’) such that
H(m) =H(m’)

a “collision”collision-resistance

34

Collisions always exist

domain
range

m

m’

Since the domain is
larger than the range the

collisions have to exist.

35

“Practical definition”

H is a collision-resistant hash function if it is “practically
impossible to find collisions in H”.

Popular hash funcitons:

• MD5 (now considered broken)

• SHA1

• ...

36

A common method for constructing
hash functions

1. Construct a “fixed-input-length” collision-resistant hash
function

Call it: a collision-resistant compression function.

2. Use it to construct a hash function.

h : {0,1}2·L → {0,1}L

h(m)

m

L

2·L

37

An idea

m

h h

m1

h

m2 mB

IV

0000

pad with zeroes
if needed

. . .

t

mi є {0,1}L

H(m)

can be arbitrary

This doesn’t work...

. . .

38

Why is it wrong?

m

m1 m2 mB

0000

t

If we set m’ = m || 0000 then H(m’) = H(m).

Solution: add a block encoding “t”.

m

m1 m2 mB

0000

t

mB+1 := t

. . .

. . .

39

Merkle-Damgård transform

m

h h h

m1

h

m2 mB mB+1 := t

IV

0000

. . .

t

given h : {0,1}2L → {0,1}L

we construct H : {0,1}*→ {0,1}L

mi є {0,1} L

H(m)

doesn’t need to be
know in advance

(nice!)

40

This construction is secure

We would like to prove the following:

If
h : {0,1}2L → {0,1}L

is a collision-resistant compression function
then

H : {0,1}*→ {0,1}L

is a collision-resistant hash function.

Theorem

41

Let’s prove it: How to compute a collision
(x,y) in h from a collision (m,m’) in H?

We consider two options:

1. |m| = |m’|

2. |m| ≠ |m’|

42

Option 1: |m| = |m’|

m

m1 m2 mB mB+1 := t

0000

t

m

m1 m2 mB mB+1 := t

0000

t

43

|m| = |m’|

m

h h h

m1

h

m2 mB mB+1 := t

z2
IV

0000

. . .

H(m)z1 z3 zB+1zB

Some notation:

44

|m| = |m’|

m’

h h h

m’1

h

m’2 m’B m’B+1 := t

z’2
IV

0000

. . .

H(m’)z’1 z’3 z’B+1z’B

For m’:

45

z1 = IVm1

z2m2

zBmB

zB+1mB+1

. . .

z’1 = IVm’1

z’2m’2

z’Bm’B

z’B+1m’B+1

. . .

equalzB+2=H(m) zB+2=H(m’)

not equal

z3 z3

46

z1 = IVm1

z2m2

zBmB

zB+1mB+1

. . .

z’1 = IVm’1

z’2m’2

z’Bm’B

z’B+1m’B+1

. . .

equalzB+2=H(m)

Let i* be the
least i such that

(mi,zi) = (m’i,z’i)

(because m ≠ m’
such an i* > 1
always exists!)

zB+2=H(m’)

47

So, we have found a collision!

zi*-1mi*-1

zi*

z’i*-1m’i*-1

z’i*

not equal

equal

h h

48

Option 2: |m| ≠ |m’|

zB+1mB+1 z’B’+1m’B’+1

equalH(m) H(m’)

. . .

. . .

the last block encodes
the length on the message

so these values
cannot be equal!

So, again we have found a collision!

49

Generic attacks on hash functions

Remember the brute-force attacks on the encryption schemes?

For the hash functions we can do something slightly smarter...

It is called a “birthday attack”.

Answer:

50

The birthday paradox

Suppose we have a random function

H : A → B

Take n values

x1,...,xn

Let p(n) be the probability that there exist distinct i,j such that

H(xi) = H(xj).

If n ≥ |B| then trivially p(n) = 1.

n | B |

Question: How large n needs to be to get p(n) = 1/2

51

Why is it called “a birthday paradox”?

Set:

H : people → birthdays

Q: How many random people you need to take to
know that with probability 0.5 at least 2 of them
have birthday on the same day?

A: 23 is enough!

Counterintuitive...

52

How does the birthday attack work?

For a hash function

H : {0,1}* → {0,1}L

Take a random X – a subset of {0,1}2L, such that |X| = 2L/2.

With probability around 0.5 there exists x,x’ є X, such that

H(x) = H(x’).

A pair (x,x’) can be found in time O(|X| log |X|) and space
O(|X|).

Moral

L has to be such that an attack that needs 2L/2 steps is infeasible.

Find collisions for crypto-hashes?
• The brute-force birthday attack aims at finding a collision for a cryptographic function h with domain [1,2,…,m]

• Randomly generate a sequence of plaintexts X1, X2, X3,…

• For each Xi compute yi = h(Xi) and test whether yi = yj for some j < i

• Stop as soon as a collision has been found

• If there are m possible hash values, the probability that the i-th plaintext does not collide with any of the previous i -1

plaintexts is 1 - (i - 1)/m

• The probability Fk that the attack fails (no collisions) after k plaintexts is

Fk = (1 - 1/m) (1 - 2/m) (1 - 3/m) … (1 - (k - 1)/m)

• Using the standard approximation 1 - x e-x

Fk e-(1/m + 2/m + 3/m + … + (k-1)/m) = e-k(k-1)/2m

• The attack succeeds with probability p when Fk = 1 – p, that is,

e-k(k-1)/2m = 1 – p

• For p=1/2

k 1.17 m½

• For m = 365, p=1/2, k is around 24

Birthday attack

55

Concrete functions

• MD5,

• SHA-1, SHA-256,...

•

all use (variants of) Merkle-Damgård transformation.

Hash functions can also be constructed using the number theory.

56

MD5 (Message-Digest Algorithm 5)

• output length: 128 bits,

• designed by Rivest in 1991,

• in 1996, Dobbertin found collisions in the compresing function of
MD5,

• in 2004 a group of Chinese mathematicians designed a method
for finding collisions in MD5,

• there exist a tool that finds collisions in MD5 with a speed
1 collision / minute (on a laptop-computer)

Is MD5 completely broken?

The attack would be practical if the colliding documents “made
sense”...

In 2005 A. Lenstra, X. Wang, and B. de Weger found X.509
certificates with different public keys and the same MD5 hash.

57

SHA-1 (Secure Hash Algorithm)

• output length: 160 bits,

• designed in 1993 by the NSA,

• in 2005 Xiaoyun Wang, Andrew Yao and Frances
Yao presented an attack that runs in time 263.

• Still rather secure, but new hash algorithms are
needed!

A US National Institute of Standards and
Technology is currently running a competition for a
new hash algorithm.

SHA-2 overview

59

What the industry says about the
“hash and authenticate” method?

the block cipher is still there...

Why don’t we just hash a message
together with a key:

MACk(m) = H(k || m)
?

It’s not secure!

60

Suppose H was constructed using the MD-
transform

IVk

z2m

zBt

MACk(m)

IVk

z2m

zBt

MACk(m||t)

t + L MACk(m)

L

61

Again, let h : {0,1}2L → {0,1}L be a compression function.

A better idea

M. Bellare, R. Canetti, and H. Krawczyk (1996):

• NMAC (Nested MAC)

• HMAC (Hash based MAC)

have some “provable properties”

They both use the Merkle-Damgård transform.

62

NMAC

m

h h

m1

h

mB mB+1 := |m|

k1

0000

. . .

h
k2 NMAC(k1,k2) (m)

63

Looks better, but

1. our libraries do not permit to
change the IV

2. the key is too long: (k1,k2)

HMAC is the
solution!

64

HMAC

h h

k xor ipad

h

m1 mB+1 := |m|

IV

. . .

h
IV HMACk (m)h

k xor opad

ipad = 0x36 repeated
opad = 0x5C repeated

65

HMAC – the properties

Looks complicated, but it is very easy to implement
(given an implementation of H):

HMACk(m) = H((k xor opad) || H(k xor ipad || m))

It has some “provable properties” (slightly weaker than
NMAC).

Widely used in practice.
We like it!

