
ENEE 457: Computer Systems Security
09/14/16

Lecture 5
Message Authentication Codes: Definition and

Construction from PRPs

Charalampos (Babis) Papamanthou

Department of Electrical and Computer Engineering

University of Maryland, College Park

•Slides adjusted from:
•http://dziembowski.net/Teaching/BISS09/

©2009 by Stefan Dziembowski. Permission to make digital or hard copies of part or all of
this material is currently granted without fee provided that copies are made only for
personal or classroom use, are not distributed for profit or commercial advantage, and
that new copies bear this notice and the full citation.

3

Message Authentication

Integrity:

M

interferes with the transmission
(modifies the message, or inserts
a new one)

Alice Bob

How can Bob be sure that
M really comes from Alice?

4

Sometimes: more important than
secrecy!

Alice Bank
transfer 1000 $ to Eve

transfer 1000 $ to Bob

Of course: usually we want both secrecy and integrity.

5

Does encryption guarantee message integrity?

Idea:

1. Alice encrypts m and sends c=Enc(k,m) to Bob.

2. Bob computes Dec(k,m), and if it “makes sense” accepts it.

Intuiton: only Alice knows k, so nobody else can produce a valid ciphertext.

It does not work!

Example: one-time pad.

transfer 1000 $ to Bob

key K

ciphertext C

transfer 1000 $ to Eve

“Eve” xor “Bob”

plaintext

xor

6

Message authentication

Alice Bob

(m, t=Tagk(m))

Eve can see (m, t=Tagk(m))

She should not be able to
compute a valid tag t’ on any
other message m’.

k k

m
verifies if
t=Tagk(m)

7

Message authentication – multiple
messages

Alice Bob

(m1, t=Tagk(m1))

Eve should not be able to
compute a valid tag t’ on any
other message m’.

k k

(m2, t=Tagk(m2))m2

m1

(mw, t=Tagk(mw))mt

. . .

. . .

8

Alice Bob

(m, t=Tagk(m))

k k

m є {0,1}*

k is chosen randomly
from some set T

Vrfyk(m) є {yes,no}

Message Authentication Codes – the
idea

A mathematical view

K – key space

M – plaintext space

T - set of tags

A MAC scheme is a pair (Tag, Vrfy), where

 Tag : K × M → T is an tagging algorithm,

 Ver:K × M × T → {yes, no} is an decryption algorithm.

We will sometimes write Tagk(m) and Vrfyk(m,t) instead of

Tag(k,m) and Vrfy(k,m,t).

Correctness

it should always holds that:
Vrfyk(m,Tagk(m)) = yes.

10

Therefore we assume that

1. The adversary is allowed to chose m1,...,mw.

2. The goal of the adversary is to produce a valid tag on
some m’ such that m’ ≠ m1,...,mw.

How to define security?

We need to specify:

1. how the messages m1,...,mw are chosen,

2. what is the goal of the adversary.

Good tradition: be as pessimistic as possible!

11

selects random a k Є {0,1}n

oracle

m1

mw

. . .

(m1, t=Tagk(m1))

(mw, t=Tagk(mw))

We say that the MAC scheme is secure if at the end the adversary
cannot output (m’,t’) such that

Vrfy(m’,t’) = yes
and

m’ ≠ m1,...,mw

adversary

12

Aren’t we too paranoid?

Maybe it would be enough to require that:

the adversary succeds only if he forges a message that
“makes sense”.

(e.g.: forging a message that consists of random noise should
not count)

Bad idea:

• hard to define,

• is application-dependent.

13

Warning: MACs do not offer protection against
the “replay attacks”.

Alice Bob

(m, t)

Since Vrfy has no state (or
“memory”) there is no way to
detect that (m,t) is not fresh!

This problem has to be solved by the higher-level application
(methods: time-stamping, sequence numbers...).

14

Authentication and Encryption

Usually we want to authenticate and encrypt at the same time.

What is the right way to do it? There are several options:

• Encrypt-and-authenticate:

c ← Enck1(m) and t ← Mack2 (m)

• Authenticate-then-encrypt:

t ← Mack2 (m) and c ← Enck1(m||t)

• Encrypt-then-authenticate:

c ← Enck1(m) and t ← Mack2 (c)

By the way: never use the same key for Enc and Mac:

k1 and k2 have to be “independent”!

wrong

better

the best

15

Constructing a MAC

1. MACs can be constructed from the block-ciphers.
We will now discuss to constructions:

• simple (and not practical),

• a little bit more complicated (and practical) – a CBC-MAC

1. MACs can also be constructed from the hash functions
(NMAC, HMAC).

16

A simple construction from a block
cipher

Let

F : {0,1}n × {0,1}n → {0,1}n

be a block cipher.

We can now define a MAC scheme that
works only for messages m Є {0,1}n as
follows:

• Mac(k,m) = F(k,m)

It can be proven that it is a secure MAC.

How to generalize it to longer messages?

Fkk

m

F(k,m)

17

Idea 1

Fk

m1

F(k,m1)

Fk

md

F(k,md)

. . .

• divide the message in blocks m1,...,md

• and authenticate each block separately

This doesn’t work!

18

t = Tagk(m):

m:

t’ = perm(t):

m’ = perm(m):

perm

Then t’ is a valid tag on m’.

What goes wrong?

19

Idea 2

Fk

m1

F(k,x1)

Fk

md

F(k,xd)

. . .

Add a counter to each block.

This doesn’t work either!

1 d

x1 xd

20

xi

m:

t = Tagk(m):

m’ = a prefix of m:

t’ = a prefix of t:

Then t’ is a valid tag on m’.

mii

21

Idea 3

Fk

m1

F(k,x1)

Fk

md

F(k,xd)

. . .

Add l := |m| to each block

This doesn’t work either!

1 dl l

x1 xd

22

What goes wrong?

xi

m:

t = Tagk(m):

m’:

t’ = Tagk(m’):

m’’ = first half from m || second half from m’

t’’ = first half from t || second half from t’

Then t’’ is a valid tag on m’’.

m1 1l

23

Idea 4

Fk

F(k,x1)

Fk

md

F(k,xd)

. . .

Add a fresh random value to each block!

This works!

dl

x1 xd

rmddlr

24pad with zeroes if needed

Fk

F(k,x1)

m

1lr

Fk

F(k,x2)

m22r

Fk

F(k,xd)

mddr

m1 m2 md
. . .

. . .

. . .

m1

l

ll

x1
x2 xd

r is chosen randomly

r

tagk(m)

000

25

This construction can be proven
secure

Theorem

Assuming that

F : {0,1}n × {0,1}n → {0,1}n is a pseudorandom permutation

the construction from the previous slide is a secure MAC.

26

Problem:

The tag is at least as big as the message...
But we do not need to decrypt, just to verify

This construction is not practical

We can do much better!

27

CBC-MAC

m

m1 m2 m3 md
. . .

pad with zeroes if needed

0000

|m|

Fk Fk Fk Fk Fk

tagk(m)

F : {0,1}n × {0,1}n → {0,1}n - a block cipher

Other variants exist!

28

m1 m2 m3 md
. . .

|m|

Fk Fk Fk Fk Fk

Why is this needed?

Suppose we do not prepend |m|...

tagk(m)

29

m1

Fk

t1=tagk(m
1)

m2

Fk

t2=tagk(m
2)

m1 m2 xor t1

Fk Fk

t’= tagk(m’)

m’

t’ = t2

t1

the adversary
chooses:

now she can
compute:

