

ENEE 459-C
Computer Security

Message authentication

Data Integrity and Source Authentication

•  Encryption does not protect data from modification
by another party.
•  Why?

•  Need a way to ensure that data arrives at destination
in its original form as sent by the sender and it is
coming from an authenticated source (by trusting a
very small channel).

Hash Functions
§  A hash function maps a message of an arbitrary length

to a m-bit output
§  output known as the fingerprint or the message digest

§  What is an example of hash functions?
§  Given a hash function that maps Strings to integers in

[0,2^{32}-1]
§  F(x) = A x + b mod q, where x =0,1,…,T where T>>q
§  Hash function used in the hash table data structure

Using Hash Functions for Message Integrity

§  Method 1: Uses a Hash Function h, assuming an
authentic (adversary cannot modify) channel for short
messages
§  Transmit a message M over the normal (insecure) channel
§  Transmit the message digest h(M) over the secure channel
§  When receiver receives both M’ and h, how does the receiver

check to make sure the message has not been modified?

§  This is insecure. How to attack it?
§  A hash function is a many-to-one function, so collisions

can happen.

Non-crypto Hash (1)

§  Data X = (X0,X1,X2,…,Xn-1), each Xi is a bit
§  hash(X) = X0+X1+X2+…+Xn-1
§  What is the compression of this hash?
§  Show how to attack it

Non-crypto Hash (2)

§  Data X = (X0,X1,X2,…,Xn-1)
§  Suppose hash is

§  h(X) = nX0+(n-1)X1+(n-2)X2+…+1⋅Xn-1

§  What is the compression of this hash?
§  Show how to attack it

Non-crypto Hash (3)

§  Cyclic Redundancy Check (CRC)
§  Essentially, CRC is the remainder in a

long division calculation
§  Find a collision (modulo x8+1)
§  Easy to construct collisions
§  CRC sometimes mistakenly used in

crypto applications (WEP)

Cryptographic Hash Functions
 Given a function h:X →Y, then we say that h is:
§  preimage resistant (one-way):
 if given y ∈Y it is computationally infeasible to find a

value x ∈X s.t. h(x) = y
§  2-nd preimage resistant (weak collision resistant):
 if given x ∈ X it is computationally infeasible to find a

value x’ ∈ X, s.t. x’≠x and h(x’) = h(x)
§  collision resistant (strong collision resistant):
 if it is computationally infeasible to find two distinct

values x’,x ∈ X, s.t. h(x’) = h(x)

Relations between properties
§  collision resistance ⇒ 2nd preimage

resistance
§  2nd preimage resistance ? preimage

resistance

Find collisions for crypto-hashes?
§  The brute-force birthday attack aims at finding a collision for a cryptographic

function h
§  Randomly generate a sequence of plaintexts X1, X2, X3,…
§  For each Xi compute yi = h(Xi) and test whether yi = yj for some j < i
§  Stop as soon as a collision has been found

§  If there are m possible hash values, the probability that the i-th plaintext does not
collide with any of the previous i -1 plaintexts is 1 - (i - 1)/m

§  The probability Fk that the attack fails (no collisions) after k plaintexts is
 Fk = (1 - 1/m) (1 - 2/m) (1 - 3/m) … (1 - (k - 1)/m)

§  Using the standard approximation 1 - x ≈ e-x

Fk ≈ e-(1/m + 2/m + 3/m + … + (k-1)/m) = e-k(k-1)/2m

§  The attack succeeds with probability p when Fk = 1 – p, that is,
e-k(k-1)/2m = 1 – p

§  For p=1/2
k ≈ 1.17 m½

§  For m = 365, p=1/2, k is around 24

Birthday attack

Applications: Online Bid Example

§  Suppose Alice, Bob, Charlie are bidders
§  Alice plans to bid A, Bob B and Charlie C

§  They do not trust that bids will be secret
§  Nobody willing to submit their bid

§  Solution?
§  Alice, Bob, Charlie submit hashes h(A),h(B),h(C)
§  All hashes received and posted online
§  Then bids A, B and C revealed

§  Hashes do not reveal bids (which property?)
§  Cannot change bid after hash sent (which property?)

Online Bid
§  This protocol is not secure!
§  A forward search attack is possible

§  Bob computes h(A) for likely bids A

§  How to prevent this?
§  Alice computes h(A,R), R is random

§  Then Alice must reveal A and R
§  Bob cannot try all A and R

Applications: Securing storage
§  Bob has files f1,f2,…,fn
§  Bob sends to Amazon S3 the hashes

§  h(r||f1),h(r||f2),…,h(r||fn)
§  The files f1,f2,…,fn

§  Bob stores randomness r (and keeps it secret)
§  Every time Bob reads a file f1, he also reads

h(r||fi) and verifies
§  Any problems with writes?

Well Known Hash Functions
§  MD5

§  output 128 bits
§  collision resistance completely broken by researchers in China in

2004

§  SHA1
§  output 160 bits
§  considered insecure for collision resistance

§  SHA2 (SHA-224, SHA-256, SHA-384, SHA-512)
§  outputs 224, 256, 384, and 512 bits, respectively
§  No real security concerns yet

§  SHA3
§  Recently proposed
§  Not meant to replace SHA2

Merkle-Damgard Construction for
Hash Functions

•  Message is divided into fixed-size blocks and padded
•  Uses a compression function f, which takes a chaining variable (of

size of hash output) and a message block, and outputs the next
chaining variable

•  Final chaining variable is the hash value

Merkle’s meta-method

§  any collision resistant compression
function f can be extended to a CRHF

§  Merkle’s meta-method provides an
efficient way to construct CRHF from f
§  n bit output, r bit chain variable
§  collision for h would imply collision for f for

some stage i

Message-Digest Algorithm 5 (MD5)

§  Developed by Ron Rivest in 1991

§  Uses 128-bit hash values

§  Still widely used in legacy applications
although considered insecure

§  Various severe vulnerabilities discovered

§  Collisions found by Marc Stevens, Arjen
Lenstra and Benne de Weger

SHA-2 overview

