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Last lecture

 Hash function

 Cryptographic hash function

 Message authentication

 with hash function (attack?)

 with cryptographic hash function (attack?)



Find collisions for crypto-hashes?
 The brute-force birthday attack aims at finding a collision for a cryptographic  

function h

 Randomly generate a sequence of plaintexts X1, X2, X3,…

 For each Xi compute yi = h(Xi) and test whether yi = yj for some j < i

 Stop as soon as a collision has been found

 If there are m possible hash values, the probability that the i-th plaintext does not 
collide with any of the previous i -1 plaintexts is 1 - (i - 1)/m

 The probability Fk that the attack fails (no collisions) after k plaintexts is

Fk = (1 - 1/m) (1 - 2/m) (1 - 3/m) … (1 - (k - 1)/m)

 Using the standard approximation 1 - x  e-x

Fk  e-(1/m + 2/m + 3/m + … + (k-1)/m) = e-k(k-1)/2m

 The attack succeeds with probability p when Fk = 1 – p, that is,

e-k(k-1)/2m = 1 – p 

 For p=1/2

k  1.17 m½

 For m = 365, p=1/2, k is around 24



Birthday attack



Applications: Online Bid Example

 Suppose Alice, Bob, Charlie are bidders

 Alice plans to bid A, Bob B and Charlie C

 They do not trust that bids will be secret

 Nobody willing to submit their bid

 Solution?
 Alice, Bob, Charlie submit hashes h(A),h(B),h(C)

 All hashes received and posted online

 Then bids A, B and C revealed

 Hashes do not reveal bids (which property?)

 Cannot change bid after hash sent (which property?)



Online Bid

 This protocol is not secure!

 A forward search attack is possible

 Bob computes h(A) for likely bids A

 How to prevent this?

 Alice computes h(A,R), R is random

 Then Alice must reveal A and R

 Bob cannot try all A and R



Applications: Securing storage

 Bob has files f1,f2,…,fn

 Bob sends to Amazon S3 the hashes 

 h(r||f1),h(r||f2),…,h(r||fn)

 The files f1,f2,…,fn

 Bob stores randomness r (and keeps it 

secret)

 Every time Bob reads a file f1, he also 

reads h(r||fi) and verifies

 Any problems with writes?



Well Known Hash Functions
 MD5 

 output 128 bits

 collision resistance completely broken by researchers in China in 
2004

 SHA1

 output 160 bits

 considered insecure for collision resistance

 SHA2 (SHA-224, SHA-256, SHA-384, SHA-512)

 outputs 224, 256, 384, and 512 bits, respectively

 No real security concerns yet

 SHA3

 Recently proposed

 Not meant to replace SHA2



Merkle-Damgard Construction for 
Hash Functions

• Message is divided into fixed-size blocks and padded

• Uses a compression function f, which takes a chaining variable (of 
size of hash output) and a message block, and outputs the next 
chaining variable

• Final chaining variable is the hash value



Merkle’s meta-method

 any collision resistant compression 
function f can be extended to a CRHF

 Merkle’s meta-method provides an 
efficient way to construct CRHF from f

 n bit output, r bit chain variable

 collision for h would imply collision for f for 
some stage i



Message-Digest Algorithm 5 (MD5)

 Developed by Ron Rivest in 1991

 Uses 128-bit hash values

 Still widely used in legacy applications 

although considered insecure

 Various severe vulnerabilities discovered

 Collisions found by Marc Stevens, Arjen

Lenstra and Benne de Weger



SHA-2 overview



SHA-2 internals



Limitation of Using Hash 
Functions for Authentication

 Require an authentic channel to transmit 
the hash of a message

 Without such a channel, it is insecure, 
because anyone can compute the hash 
value of any message, as the hash function 
is public

 Such a channel may not always exist

 How to address this?

 use more than one hash functions

 use a key to select which one to use



Hash Family

 A hash family is a four-tuple (X,Y,K,H ), 
where

 X is a set of possible messages

 Y is a finite set of possible message digests

 K is the keyspace

 For each KK, there is a hash function hKH
. Each hK: X Y

 Alternatively, one can think of H as a 

function KXY



Message Authentication Code

 A MAC scheme is a hash family, used for 
message authentication

 MAC(K,M) = HK(M)

 The sender and the receiver share secret K

 The sender sends (M, Hk(M))

 The receiver receives (X,Y) and verifies 
that HK(X)=Y, if so, then accepts the 
message as from the sender

 To be secure, an adversary shouldn’t be 
able to come up with (X’,Y’) such that 
HK(X’)=Y’.



Security Requirements for MAC

 Resist the Existential Forgery under 
Chosen Plaintext Attack

 Challenger chooses a random key K

 Adversary chooses a number of messages 
M1, M2, .., Mn, and obtains tj=MAC(K,Mj) for 
1jn

 Adversary outputs M’ and t’

 Adversary wins if j M’≠Mj, and 
t’=MAC(K,M’)



Constructing MAC from Hash 
Functions

 Let h be a one-way hash function

 MAC(K,M) = h(K || M), where || denote 
concatenation

 Insecure as MAC

 Because of the Merkle-Damgard construction 
for hash functions, given M and t=h(K || M), 
adversary can compute M’=M||… and t’, 
such that h(K||M’) = t’



HMAC: Constructing MAC from 
Cryptographic Hash Functions

 K+ is the key padded (with 0) to B bytes, the 
input block size of the hash function

 ipad = the byte 0x36 repeated B times

 opad = the byte 0x5C repeated B times. 

HMACK[M] = Hash[(K+  opad) || Hash[(K+  ipad)||M)]]

At high level, HMACK[M] = H(K || H(K || M))



HMAC Security

 If used with a secure hash functions 
(e.g., SHA-256) and according to the 
specification (key size, and use correct 
output), no known practical attacks 
against HMAC



Randomness is important!

 The keystream in the one-time pad

 The secret key used in ciphers

 The initialization vectors (IVs) used in ciphers



Pseudo-random Number Generator

 Pseudo-random number generator: 
 A polynomial-time computable function f (x) that expands a 

short random string x into a long string f (x) that appears 
random

 Not truly random in that: 
 Deterministic algorithm

 Dependent on initial values

 Anyone who considers arithmetical methods of 
producing random digits is, of course, in a state of sin.” 
– John von Neumann

 Objectives 
 Fast

 Secure



Pseudo-random Number Generator

 Classical PRNGs
 Linear Congruential Generator

 Cryptographically Secure PRNGs
 Blum-Micali Generator



Linear Congruential Generator - Algorithm

 Based on the linear recurrence:
xi =  a xi-1 + b  mod m i≥1

Where
x0 is the seed or start value
a is the multiplier
b is the increment
m is the modulus

Output 
(x1, x2, …, xk)

yi = xi mod 2
Y = (y1y2…yk)    pseudo-random sequence of K bits



Linear Congruential Generator - Example

 Let xn =  3 xn-1 + 5 mod 31  n≥1, and x0 = 2
 3 and 31 are relatively prime, one-to-one (affine cipher) 

 31 is prime, order is 30

 Then we have the 30 residues in a cycle:
 2, 11, 7, 26, 21, 6, 23, 12, 10, 4, 17, 25, 18, 28, 27, 24, 15, 19, 0, 

5, 20, 3, 14, 16, 22, 9, 1, 8, 29, 30

 Pseudo-random sequences of 10 bits 
 when x0 = 2

01101010001

 When x0 = 3

10001101001



Linear Congruential Generator - Security

 Fast, but insecure

 Sensitive to the choice of parameters a, b, and m

 Serial correlation between successive values

 Short period, often m=232 or m=264



Linear Congruential Generator -
Application

 Used commonly in compilers

 Rand()

 Not suitable for high-quality randomness applications

 Not suitable for cryptographic applications

 Use cryptographically secure pseudo-random number generators



Cryptographically Secure 

 Passing the next-bit test
 Given the first k bits of a string generated by PRBG, there is no 

polynomial-time algorithm that can correctly predict the next 
(k+1)th bit with probability significantly greater than ½

 Next-bit unpredictable



Blum-Micali Generator - Concept

 Discrete logarithm
 Let p be an odd prime, then (Zp

*, ·) is a cyclic group with 
order p-1

 Let g be a generator of the group, then |<g>| = p-1, and for 
any element a in the group , we have gk = a mod p for some 
integer k

 If we know k, it is easy to compute a

 However, the inverse is hard to compute, that is, if we know 
a, it is hard to compute k = logg a

 Example
 (Z17

*, ·) is a cyclic group with order 16, 3 is the generator of 
the group and 316 = 1 mod 17

 Let k=4, 34 = 13 mod 17, which is easy to compute

 The inverse: 3k = 13 mod 17, what is k? what about large p?



Blum-Micali Generator - Algorithm

 Based on the discrete logarithm one-way function:
 Let p be an odd prime, then (Zp

*, ·) is a cyclic group
 Let g be a generator of the group, then for any element a, we 

have gk = a mod p for some k
 Let x0 be a seed 

xi = gxi-1 mod p i≥1

Output
(x1, x2, …, xk)

yi = 1 if xi ≥ (p-1)/2
yi = 0 otherwise 
Y = (y1y2…yk)      pseudo-random sequence of K bits



Blum-Micali Generator - Security

 Blum-Micali Generator is provably secure

 It is difficult to predict the next bit in the sequence given the 
previous bits, assuming it is difficult to invert the discrete logarithm 
function (by reduction)


