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Computer Security

Message authentication 
(continue from previous lecture)



Last lecture

 Hash function

 Cryptographic hash function

 Message authentication

 with hash function (attack?)

 with cryptographic hash function (attack?)



Find collisions for crypto-hashes?
 The brute-force birthday attack aims at finding a collision for a cryptographic  

function h

 Randomly generate a sequence of plaintexts X1, X2, X3,…

 For each Xi compute yi = h(Xi) and test whether yi = yj for some j < i

 Stop as soon as a collision has been found

 If there are m possible hash values, the probability that the i-th plaintext does not 
collide with any of the previous i -1 plaintexts is 1 - (i - 1)/m

 The probability Fk that the attack fails (no collisions) after k plaintexts is

Fk = (1 - 1/m) (1 - 2/m) (1 - 3/m) … (1 - (k - 1)/m)

 Using the standard approximation 1 - x  e-x

Fk  e-(1/m + 2/m + 3/m + … + (k-1)/m) = e-k(k-1)/2m

 The attack succeeds with probability p when Fk = 1 – p, that is,

e-k(k-1)/2m = 1 – p 

 For p=1/2

k  1.17 m½

 For m = 365, p=1/2, k is around 24



Birthday attack



Applications: Online Bid Example

 Suppose Alice, Bob, Charlie are bidders

 Alice plans to bid A, Bob B and Charlie C

 They do not trust that bids will be secret

 Nobody willing to submit their bid

 Solution?
 Alice, Bob, Charlie submit hashes h(A),h(B),h(C)

 All hashes received and posted online

 Then bids A, B and C revealed

 Hashes do not reveal bids (which property?)

 Cannot change bid after hash sent (which property?)



Online Bid

 This protocol is not secure!

 A forward search attack is possible

 Bob computes h(A) for likely bids A

 How to prevent this?

 Alice computes h(A,R), R is random

 Then Alice must reveal A and R

 Bob cannot try all A and R



Applications: Securing storage

 Bob has files f1,f2,…,fn

 Bob sends to Amazon S3 the hashes 

 h(r||f1),h(r||f2),…,h(r||fn)

 The files f1,f2,…,fn

 Bob stores randomness r (and keeps it 

secret)

 Every time Bob reads a file f1, he also 

reads h(r||fi) and verifies

 Any problems with writes?



Well Known Hash Functions
 MD5 

 output 128 bits

 collision resistance completely broken by researchers in China in 
2004

 SHA1

 output 160 bits

 considered insecure for collision resistance

 SHA2 (SHA-224, SHA-256, SHA-384, SHA-512)

 outputs 224, 256, 384, and 512 bits, respectively

 No real security concerns yet

 SHA3

 Recently proposed

 Not meant to replace SHA2



Merkle-Damgard Construction for 
Hash Functions

• Message is divided into fixed-size blocks and padded

• Uses a compression function f, which takes a chaining variable (of 
size of hash output) and a message block, and outputs the next 
chaining variable

• Final chaining variable is the hash value



Merkle’s meta-method

 any collision resistant compression 
function f can be extended to a CRHF

 Merkle’s meta-method provides an 
efficient way to construct CRHF from f

 n bit output, r bit chain variable

 collision for h would imply collision for f for 
some stage i



Message-Digest Algorithm 5 (MD5)

 Developed by Ron Rivest in 1991

 Uses 128-bit hash values

 Still widely used in legacy applications 

although considered insecure

 Various severe vulnerabilities discovered

 Collisions found by Marc Stevens, Arjen

Lenstra and Benne de Weger



SHA-2 overview



SHA-2 internals



Limitation of Using Hash 
Functions for Authentication

 Require an authentic channel to transmit 
the hash of a message

 Without such a channel, it is insecure, 
because anyone can compute the hash 
value of any message, as the hash function 
is public

 Such a channel may not always exist

 How to address this?

 use more than one hash functions

 use a key to select which one to use



Hash Family

 A hash family is a four-tuple (X,Y,K,H ), 
where

 X is a set of possible messages

 Y is a finite set of possible message digests

 K is the keyspace

 For each KK, there is a hash function hKH
. Each hK: X Y

 Alternatively, one can think of H as a 

function KXY



Message Authentication Code

 A MAC scheme is a hash family, used for 
message authentication

 MAC(K,M) = HK(M)

 The sender and the receiver share secret K

 The sender sends (M, Hk(M))

 The receiver receives (X,Y) and verifies 
that HK(X)=Y, if so, then accepts the 
message as from the sender

 To be secure, an adversary shouldn’t be 
able to come up with (X’,Y’) such that 
HK(X’)=Y’.



Security Requirements for MAC

 Resist the Existential Forgery under 
Chosen Plaintext Attack

 Challenger chooses a random key K

 Adversary chooses a number of messages 
M1, M2, .., Mn, and obtains tj=MAC(K,Mj) for 
1jn

 Adversary outputs M’ and t’

 Adversary wins if j M’≠Mj, and 
t’=MAC(K,M’)



Constructing MAC from Hash 
Functions

 Let h be a one-way hash function

 MAC(K,M) = h(K || M), where || denote 
concatenation

 Insecure as MAC

 Because of the Merkle-Damgard construction 
for hash functions, given M and t=h(K || M), 
adversary can compute M’=M||… and t’, 
such that h(K||M’) = t’



HMAC: Constructing MAC from 
Cryptographic Hash Functions

 K+ is the key padded (with 0) to B bytes, the 
input block size of the hash function

 ipad = the byte 0x36 repeated B times

 opad = the byte 0x5C repeated B times. 

HMACK[M] = Hash[(K+  opad) || Hash[(K+  ipad)||M)]]

At high level, HMACK[M] = H(K || H(K || M))



HMAC Security

 If used with a secure hash functions 
(e.g., SHA-256) and according to the 
specification (key size, and use correct 
output), no known practical attacks 
against HMAC



Randomness is important!

 The keystream in the one-time pad

 The secret key used in ciphers

 The initialization vectors (IVs) used in ciphers



Pseudo-random Number Generator

 Pseudo-random number generator: 
 A polynomial-time computable function f (x) that expands a 

short random string x into a long string f (x) that appears 
random

 Not truly random in that: 
 Deterministic algorithm

 Dependent on initial values

 Anyone who considers arithmetical methods of 
producing random digits is, of course, in a state of sin.” 
– John von Neumann

 Objectives 
 Fast

 Secure



Pseudo-random Number Generator

 Classical PRNGs
 Linear Congruential Generator

 Cryptographically Secure PRNGs
 Blum-Micali Generator



Linear Congruential Generator - Algorithm

 Based on the linear recurrence:
xi =  a xi-1 + b  mod m i≥1

Where
x0 is the seed or start value
a is the multiplier
b is the increment
m is the modulus

Output 
(x1, x2, …, xk)

yi = xi mod 2
Y = (y1y2…yk)    pseudo-random sequence of K bits



Linear Congruential Generator - Example

 Let xn =  3 xn-1 + 5 mod 31  n≥1, and x0 = 2
 3 and 31 are relatively prime, one-to-one (affine cipher) 

 31 is prime, order is 30

 Then we have the 30 residues in a cycle:
 2, 11, 7, 26, 21, 6, 23, 12, 10, 4, 17, 25, 18, 28, 27, 24, 15, 19, 0, 

5, 20, 3, 14, 16, 22, 9, 1, 8, 29, 30

 Pseudo-random sequences of 10 bits 
 when x0 = 2

01101010001

 When x0 = 3

10001101001



Linear Congruential Generator - Security

 Fast, but insecure

 Sensitive to the choice of parameters a, b, and m

 Serial correlation between successive values

 Short period, often m=232 or m=264



Linear Congruential Generator -
Application

 Used commonly in compilers

 Rand()

 Not suitable for high-quality randomness applications

 Not suitable for cryptographic applications

 Use cryptographically secure pseudo-random number generators



Cryptographically Secure 

 Passing the next-bit test
 Given the first k bits of a string generated by PRBG, there is no 

polynomial-time algorithm that can correctly predict the next 
(k+1)th bit with probability significantly greater than ½

 Next-bit unpredictable



Blum-Micali Generator - Concept

 Discrete logarithm
 Let p be an odd prime, then (Zp

*, ·) is a cyclic group with 
order p-1

 Let g be a generator of the group, then |<g>| = p-1, and for 
any element a in the group , we have gk = a mod p for some 
integer k

 If we know k, it is easy to compute a

 However, the inverse is hard to compute, that is, if we know 
a, it is hard to compute k = logg a

 Example
 (Z17

*, ·) is a cyclic group with order 16, 3 is the generator of 
the group and 316 = 1 mod 17

 Let k=4, 34 = 13 mod 17, which is easy to compute

 The inverse: 3k = 13 mod 17, what is k? what about large p?



Blum-Micali Generator - Algorithm

 Based on the discrete logarithm one-way function:
 Let p be an odd prime, then (Zp

*, ·) is a cyclic group
 Let g be a generator of the group, then for any element a, we 

have gk = a mod p for some k
 Let x0 be a seed 

xi = gxi-1 mod p i≥1

Output
(x1, x2, …, xk)

yi = 1 if xi ≥ (p-1)/2
yi = 0 otherwise 
Y = (y1y2…yk)      pseudo-random sequence of K bits



Blum-Micali Generator - Security

 Blum-Micali Generator is provably secure

 It is difficult to predict the next bit in the sequence given the 
previous bits, assuming it is difficult to invert the discrete logarithm 
function (by reduction)


