ENEE 459-C Computer Security

Message authentication (continue from previous lecture)

Last lecture

- Hash function
- Cryptographic hash function
- Message authentication
 - with hash function (attack?)
 - with cryptographic hash function (attack?)

Find collisions for crypto-hashes?

- The brute-force birthday attack aims at finding a collision for a cryptographic function h
 - Randomly generate a sequence of plaintexts X₁, X₂, X₃,...
 - For each X_i compute $y_i = h(X_i)$ and test whether $y_i = y_j$ for some j < i
 - Stop as soon as a collision has been found
- If there are m possible hash values, the probability that the i-th plaintext does not collide with any of the previous i –1 plaintexts is 1 – (i – 1)/m
- The probability F_k that the attack fails (no collisions) after k plaintexts is

$$F_k = (1 - 1/m) (1 - 2/m) (1 - 3/m) \dots (1 - (k - 1)/m)$$

• Using the standard approximation $1 - x \approx e^{-x}$

$$F_{k} \approx e^{-(1/m + 2/m + 3/m + ... + (k-1)/m)} = e^{-k(k-1)/2m}$$

• The attack succeeds with probability p when $F_k = 1 - p$, that is,

$$e^{-k(k-1)/2m} = 1 - p$$

• For p=1/2

 $k\approx 1.17~m^{1\!/_2}$

• For m = 365, p=1/2, k is around 24

Birthday attack

Applications: Online Bid Example

- Suppose Alice, Bob, Charlie are bidders
- Alice plans to bid A, Bob B and Charlie C
 - They do not trust that bids will be secret
 - Nobody willing to submit their bid
- Solution?
 - Alice, Bob, Charlie submit hashes h(A),h(B),h(C)
 - All hashes received and posted online
 - Then bids A, B and C revealed
- Hashes do not reveal bids (which property?)
- Cannot change bid after hash sent (which property?)

Online Bid

- This protocol is not secure!
- A forward search attack is possible
 Bob computes h(A) for likely bids A
- How to prevent this?
- Alice computes h(A,R), R is random
 - Then Alice must reveal A and R
 - Bob cannot try all A and R

Applications: Securing storage

- Bob has files f1,f2,...,fn
- Bob sends to Amazon S3 the hashes
 - h(r||f1),h(r||f2),...,h(r||fn)
 - The files f1,f2,...,fn
- Bob stores randomness r (and keeps it secret)
- Every time Bob reads a file f1, he also reads h(r||fi) and verifies
- Any problems with writes?

Well Known Hash Functions

MD5

- output 128 bits
- collision resistance completely broken by researchers in China in 2004
- SHA1
 - output 160 bits
 - considered insecure for collision resistance
- SHA2 (SHA-224, SHA-256, SHA-384, SHA-512)
 - outputs 224, 256, 384, and 512 bits, respectively
 - No real security concerns yet
- SHA3
 - Recently proposed
 - Not meant to replace SHA2

Merkle-Damgard Construction for Hash Functions

- Message is divided into fixed-size blocks and padded
- Uses a compression function f, which takes a chaining variable (of size of hash output) and a message block, and outputs the next chaining variable
- Final chaining variable is the hash value

Merkle's meta-method

- any collision resistant compression function f can be extended to a CRHF
- Merkle's meta-method provides an efficient way to construct CRHF from f
 - n bit output, r bit chain variable
 - collision for h would imply collision for f for some stage i

Message-Digest Algorithm 5 (MD5)

- Developed by Ron Rivest in 1991
- Uses 128-bit hash values
- Still widely used in legacy applications although considered insecure
- Various severe vulnerabilities discovered
- Collisions found by Marc Stevens, Arjen
 Lenstra and Benne de Weger

Limitation of Using Hash Functions for Authentication

- Require an authentic channel to transmit the hash of a message
 - Without such a channel, it is insecure, because anyone can compute the hash value of any message, as the hash function is public
 - Such a channel may not always exist
- How to address this?
 - use more than one hash functions
 - use a key to select which one to use

Hash Family

- A hash family is a four-tuple (X,Y,K,H), where
 - X is a set of possible messages
 - *Y* is a finite set of possible message digests
 - *K* is the keyspace
 - For each $K \in K$, there is a hash function $h_K \in H$. . Each $h_K : X \to Y$
- Alternatively, one can think of H as a function $K \times X \rightarrow Y$

Message Authentication Code

- A MAC scheme is a hash family, used for message authentication
- MAC(K,M) = $H_{K}(M)$
- The sender and the receiver share secret K
- The sender sends (M, H_k(M))
- The receiver receives (X,Y) and verifies that H_K(X)=Y, if so, then accepts the message as from the sender
- To be secure, an adversary shouldn't be able to come up with (X',Y') such that H_K(X')=Y'.

Security Requirements for MAC

- Resist the Existential Forgery under Chosen Plaintext Attack
 - Challenger chooses a random key K
 - Adversary chooses a number of messages $M_1, M_2, ..., M_n$, and obtains t_j =MAC(K,M_j) for $1 \le j \le n$
 - Adversary outputs M' and t'
 - Adversary wins if ∀j M'≠M_j, and t'=MAC(K,M')

Constructing MAC from Hash Functions

Let h be a one-way hash function

- MAC(K,M) = h(K || M), where || denote concatenation
 - Insecure as MAC
 - Because of the Merkle-Damgard construction for hash functions, given M and t=h(K || M), adversary can compute M'=M||... and t', such that h(K||M') = t'

HMAC: Constructing MAC from Cryptographic Hash Functions

 $HMAC_{K}[M] = Hash[(K^{+} \oplus opad) || Hash[(K^{+} \oplus ipad)||M)]]$

- K⁺ is the key padded (with 0) to B bytes, the input block size of the hash function
- ipad = the byte 0x36 repeated B times
- opad = the byte 0x5C repeated B times.

```
At high level, HMAC_{K}[M] = H(K || H(K || M))
```

HMAC Security

 If used with a secure hash functions (e.g., SHA-256) and according to the specification (key size, and use correct output), no known practical attacks against HMAC

Randomness is important!

- The keystream in the one-time pad
- The secret key used in ciphers
- The initialization vectors (IVs) used in ciphers

Pseudo-random Number Generator

- Pseudo-random number generator:
 - A polynomial-time computable function f (x) that expands a short random string x into a long string f (x) that appears random
- Not truly random in that:
 - Deterministic algorithm
 - Dependent on initial values
- Anyone who considers arithmetical methods of producing random digits is, of course, in a state of sin." – John von Neumann
- Objectives
 - Fast
 - Secure

Pseudo-random Number Generator

- Classical PRNGs
 - Linear Congruential Generator
- Cryptographically Secure PRNGs
 - Blum-Micali Generator

Linear Congruential Generator - Algorithm

■ Based on the linear recurrence: $x_i = a x_{i-1} + b \mod m$ $i \ge 1$

Where

 x_0 is the seed or start value a is the multiplier b is the increment m is the modulus

Output

$$\begin{array}{l} (x_1, x_2, \ldots, x_k) \\ y_i = x_i \bmod 2 \\ Y = (y_1y_2 \ldots y_k) & \leftarrow \text{ pseudo-random sequence of K bits} \end{array}$$

Linear Congruential Generator - Example

- Let $x_n = 3 x_{n-1} + 5 \mod 31$ n≥1, and $x_0 = 2$
 - 3 and 31 are relatively prime, one-to-one (affine cipher)
 - 31 is prime, order is 30
- Then we have the 30 residues in a cycle:
 - 2, 11, 7, 26, 21, 6, 23, 12, 10, 4, 17, 25, 18, 28, 27, 24, 15, 19, 0, 5, 20, 3, 14, 16, 22, 9, 1, 8, 29, 30
- Pseudo-random sequences of 10 bits
 - when x₀ = 2
 01101010001
 - When $x_0 = 3$ 10001101001

Linear Congruential Generator - Security

- Fast, but insecure
 - Sensitive to the choice of parameters a, b, and m
 - Serial correlation between successive values
 - Short period, often m=2³² or m=2⁶⁴

Linear Congruential Generator -Application

- Used commonly in compilers
 - Rand()
- Not suitable for high-quality randomness applications
- Not suitable for cryptographic applications
 - Use cryptographically secure pseudo-random number generators

Cryptographically Secure

Passing the next-bit test

- Given the first k bits of a string generated by PRBG, there is no polynomial-time algorithm that can correctly predict the next (k+1)th bit with probability significantly greater than ¹/₂
- Next-bit unpredictable

Blum-Micali Generator - Concept

- Discrete logarithm
 - Let p be an odd prime, then (Z^{*}_p, ·) is a cyclic group with order p-1
 - Let g be a generator of the group, then |<g>| = p-1, and for any element a in the group , we have g^k = a mod p for some integer k
 - If we know k, it is easy to compute a
 - However, the inverse is hard to compute, that is, if we know a, it is hard to compute k = log_q a

Example

- (Z₁₇^{*}, ') is a cyclic group with order 16, 3 is the generator of the group and 3¹⁶ = 1 mod 17
- Let k=4, $3^4 = 13 \mod 17$, which is easy to compute
- The inverse: $3^k = 13 \mod 17$, what is k? what about large p?

Blum-Micali Generator - Algorithm

- Based on the discrete logarithm one-way function:
 - Let p be an odd prime, then (Z^{*}_p, ·) is a cyclic group
 - Let g be a generator of the group, then for any element a, we have g^k = a mod p for some k
 - Let x₀ be a seed

$$x_i = g^{x_{i-1}} \mod p \qquad i \ge 1$$

Output

$$\begin{array}{ll} (x_1, x_2, \ \dots, \ x_k) \\ y_i = 1 & \text{if } x_i \geq (p-1)/2 \\ y_i = 0 & \text{otherwise} \\ Y = (y_1y_2 \dots y_k) & \leftarrow \text{pseudo-random sequence of K bits} \end{array}$$

Blum-Micali Generator - Security

- Blum-Micali Generator is provably secure
 - It is difficult to predict the next bit in the sequence given the previous bits, assuming it is difficult to invert the discrete logarithm function (by reduction)