
ENEE 457: Computer Systems Security
09/05/18

Lecture 3
Symmetric Crypto I

Charalampos (Babis) Papamanthou

Department of Electrical and Computer Engineering

University of Maryland, College Park

Symmetric Cryptosystem

• Scenario

• Alice wants to send a message (plaintext P) to Bob

• The communication channel is insecure and can be eavesdropped

• If Alice and Bob have previously agreed on a symmetric encryption scheme
and a secret key K, the message can be sent encrypted (ciphertext C)

• Issues

• What is a good symmetric encryption scheme?

• What is the complexity of encrypting/decrypting?

• What is the size of the ciphertext, relative to the plaintext?

C PP encrypt

K

decrypt

K

Basic Notions

• Notation

• Secret key K

• Encryption function EK(P)

• Decryption function DK(C)

• Plaintext length typically the same as ciphertext length

• Encryption and decryption are permutation functions
(bijections) on the set of all n-bit arrays

• Efficiency

• functions EK and DK should have efficient algorithms

• Consistency

• Decrypting the ciphertext yields the plaintext

• DK(EK(P)) = P

Attack on all schemes: Brute-Force Attack

• Try all possible keys K and determine if DK(C) is a likely

plaintext

• Requires some knowledge of the structure of the plaintext (e.g., PDF file

or email message)

• Key should be a sufficiently long random value to make

exhaustive search attacks unfeasible

Image by Michael Cote from http://commons.wikimedia.org/wiki/File:Bingo_cards.jpg

Candidate scheme: Substitution Ciphers

• Each letter is uniquely
replaced by another

• There are 26! possible
substitution ciphers

• One popular substitution
“cipher” for some Internet
posts is ROT13

Public domain image from http://en.wikipedia.org/wiki/File:ROT13.png

Or…Substitution Boxes

• Substitution can also be done on binary numbers.

• Such substitutions are usually described by substitution boxes, or S-boxes.

Attack on Substitution ciphers: Frequency Analysis

• Letters in a natural language, like English, are not
uniformly distributed

• Knowledge of letter frequencies, including pairs and
triples can be used in cryptologic attacks against
substitution ciphers

What would a great symmetric encryption scheme
satisfy?

• What if we could devise a system such that we can
encrypt and the ciphertext does not reveal anything
about the plaintext (apart from its length)

• Let’s express it mathematically

Perfect security

• Pick messages m1 and m2

• Pick a ciphertext c

• Encrypt m1

• Encrypt m2

• Compute the probability Pr[Enc(m1)=c] (over the choice of the random key)

• Compute the probability Pr[Enc(m2)=c] (over the choice of the random key)

• Enc is secure if for all messages m1 and m2 and for all ciphertexts c

• Pr[Enc(m1)=c]= Pr[Enc(m2)=c]

One-time pad

• K ← KeyGen(n): Pick a random key K of n bits

• EK(A): On input plaintext A, compute ciphertext B=A XOR K

• DK(B): On input ciphertext B, compute plaintext A=B XOR K

• Correctness: B XOR K= (A XOR K) XOR K= A XOR 0 = A

• Security?
• Note that EncK(m1)=c is the event m1 XOR K = c which is the event K = m1 XOR c

• K is chosen at random (irrespective of m1 and m2, and therefore the probability is 2-n

• Namely ciphertext does not reveal anything about the plaintext

Key space and message space in one-time pad

• Key space should be at least equal to the message space

• Suppose not and the key space is missing one element and does not contain
0000000…00

• For a given c, there exists a message m such that

• Pr[Enc(m) = c]=0

• E.g., If key does not contain 00000000000…00, then m = c

• But for all other messages m’ that are not equal to c we have that

• Pr[Enc(m’) = c]>0=1/(2^{n}-1) (why is that?)

• Therefore the definition does not hold.

• In particular, if I see a ciphertext, I have excluded one possibility

One-time pad is not practical

• In spite of their perfect
security, one-time pads have
some weaknesses

• The key has to be as long as
the plaintext

• Keys can never be reused

• Repeated use of one-time pads
compromised communications
during the cold war

Public domain declassified government image from
https://www.cia.gov/library/center-for-the-study-of-intelligence/csi-publications/books-and-monographs/venona-soviet-espionage-and-the-american-response-1939-1957/part2.htm

What do we want to use in practice?

• Size: Small, one-time key (128 bits) and also encrypting the same thing twice
should give different things

• Security: It turns out that perfect secrecy is very strong if we want to achieve both
small key and one key

• How about if we improve the best strategy of the attacker, which is still going to be really
bad for practical purposes

• Answer: Computational Secrecy

• Intution: The ciphertext does not reveal anything about the plaintext as long
as our attacker runs in time polynomial (like all machines in this class)

• If attacker can run in time 2^{size_of_key}, all bets are off

• But this is too long…

Pseudorandom permutations (PRPs)

• We say that a length-preserving keyed function F: {0,1}k  {0,1}n → {0,1}n ,
is a keyed permutation if and only if each Fk is a bijection

• Also, it is pseudorandom if an adversary could not distinguish between the
following two worlds with probability more than ½+2^{-k}
• He sends x to World1, World1 chooses a random permutation A and returns A[x]

• He sends x to World2, World2 chooses a random key k and returns Fk(x)

• How do we encrypt using PRPs a message m of n bits?

• First attempt: Pick secret key k. Return F_k(m). Problem?
• Enck(m): c := r, Fk(r)  m

• where r {0,1}n is chosen at uniform random

• Deck(c): given c=r, s, m := Fk(r)  s

• Let’s call the above scheme First_Symmetric

Question 2

• Why First_Symmetric is secure?

• But this is just intuition

Intuitively this is secure: so long as r is not used for different
messages, Fk(r) should look completely random

Semantic security (CPA)

• I give you a symmetric encryption scheme (Enc,Dec,K)

• What do you need to prove in order to say that it is secure?

• A strong notion used is “semantic security”

• We are going to define it as an interaction between the adversary A
and a trusted party T that has the secret key.

• Informally:
1. T picks a random secret key

2. A picks messages m_i and receives ciphertexts Enc_K(m_i) from T.

3. A picks message m0 and m1 and sends them to T.

4. T flips a coin b and computes tb=Enc_K(mb).

5. T sends tb to the A.

• The scheme is secure if A has no better chance of finding whether tb
corresponds to m0 or m1 than ½+2^{-k}

• This should hold even if it is repeated many (polynomial) times

Question 3

• What behavior of the adversary does this definition model?

• Think emails…

Question 4

• Why First_Symmetric without randomness r is not semantically secure?

• Provide an attack where the adversary’s chance of finding where t_b
corresponds to is 1.

Task 1

• Prove First_Symmetric is semantically secure

• Suppose it is not. That means that the adversary A, given

• m0 and m1

• c_b = Fk(r)  m_b (where b = 0 or b = 1)

can figure out whether b = 0 or b = 1. But due to the “randomness” of Fk(r), Fk(r) appears
“random”, so Fk(r)  m_b appears “random” ” and does not give any information about
m_b, a contradiction.

More advanced security (CCA)

• Informally:

• T picks a random secret key

• A picks messages m_i and receives ciphertexts Enc_K(m_i) from T.

• A picks message m0 and m1 and sends them to T.

• T flips a coin b and computes tb=Enc_K(mb).

• T sends tb to the A.

• A sends a ciphertext of its choice, different than tb, for decryption

• The scheme is secure if A has no better chance of finding whether tb

corresponds to m0 or m1 than ½+2^{-k}

• This should hold even if it is repeated many (polynomial) times

Question 5

• What behavior of the attacker does this model?

• Lunch-time attacks…

Is First_Symmetric CCA-secure?

• Ask encryption for m0 = 0000…00 and m1 = 1111…11

• You get cb = < sb, rb >, where sb =Fk(rb)  mb

• How to find b is you are allowed to send decryption queries?

• Construct new new ciphertext

• c = < sb 1000…00, rb > = < Fk(rb)  mb 1000…00, rb >

• Decryption of this will give mb 1000…00

• 1000…00, if sb was encryption of m0 = 0000…00

• 01111…1, if sb was encryption of m1 = 1111111....1111

• So we can distinguish!

• Conclusion: First_Symmetric is not CCA-secure.

How do we construct a PRP in practice?

• What is the main property we want?

• Even a single bit change in the input should yield a completely independent result

• This implies that

• Every bit of the input should affect every bit of the output…

• Or…every change in an input bit should change each output bit with probability roughly ½

• This takes some work…

A first idea (Shannon)

• Construct block cipher from many smaller random (or random-looking)
permutations

• Confusion: e.g., for block size 128, uses 16 8-bit random permutation

• Fk(x) = f1(x1)  f16(x16)

• Where key k selects 16 8-bit random permutation.

• Does Fk() look like a random permutation?

• Diffusion: bits of Fk(x) are permuted (re-ordered)

• Multiple rounds of confusion and diffusion are used.

Substitution-Permutation Networks

• A variant of the Confusion-Diffusion Paradigm

• {fi} are fixed and are called s-boxes

• Sub-keys are XORed with intermediate result

• Sub-keys are generated from the master key according to a key schedule

• Each round has three steps

• Message XORed with sub-key

• Message divided and went through s-boxes

• Message goes through a mixing permutation (bits reordered)

Substitution-Permutation Networks

Design Principles:
---A single-bit difference in each s-box results in changes in
at least two bits in output
---The mixing permutation distributes the output bits of
any s-box into multiple s-boxes

The above, with sufficient number of rounds, achieves the
avalanche effect.

AES encryption, the algorithm of choice in today’s Internet
communications is using the above framework

Question 6

• Say you have the pair of ciphertext and plaintext.

• How can you attack one round?

• How can you attack two rounds?

AES structure

Second approach: Feistel Network

• Feistel Networks

Feistel Network

• Main difference: F does not have to be invertible

• In practice: It is a Substitution-permutation network

• DES was based on that (broken, not because of bad design, but due to the size of
the key)

The DES function applies a 48-bit key to the rightmost 32 bits to produce a 32-bit output

DES function

Block Cipher Modes

• So far we have described how to encrypt a string of fixed length

• How do we encrypt a 4GB file?

• Electronic Code Book (ECB) Mode (is the simplest):

• Block P[i] encrypted into ciphertext block C[i] = EK(P[i])

• Block C[i] decrypted into plaintext block M[i] = DK(C[i])

Public domain images from http://en.wikipedia.org/wiki/File:Ecb_encryption.png and http://en.wikipedia.org/wiki/File:Ecb_decryption.png

Strengths and Weaknesses of ECB

• Strengths:
• Is very simple

• Allows for parallel
encryptions of the blocks
of a plaintext

• Can tolerate the loss or
damage of a block

• Weakness:
• Documents and images are not

suitable for ECB encryption since

patterns in the plaintext are

repeated in the ciphertext:

ECB CBC

Cipher Block Chaining (CBC) Mode

• In Cipher Block Chaining (CBC) Mode

• The previous ciphertext block is combined with the current

plaintext block C[i] = EK (C[i −1]  P[i])

• C[−1] = V, a random block separately transmitted encrypted

(known as the initialization vector)

• Decryption: P[i] = C[i −1]  DK (C[i])

DK

P[0]

DK

P[1]

DK

P[2]

DK

P[3]

V

C[0] C[1] C[2] C[3]

EK

P[0]

EK

P[1]

EK

P[2]

EK

P[3]

V

C[0] C[1] C[2] C[3]

CBC Encryption: CBC Decryption:

Question 7

• Is CBC encryption parallelizable?

• Is CBC decryption parallelizable?

OpenSSL encryption decryption

• openssl aes-256-cbc -a -in plaintext.txt -out ciphertext.txt –base64

• openssl aes-256-cbc -a -d -in ciphertext.txt -out plaintext.txt

