ENEE 457: Computer Systems Security 09/05/18

Lecture 3 Symmetric Crypto I

Charalampos (Babis) Papamanthou

Department of Electrical and Computer Engineering University of Maryland, College Park

Symmetric Cryptosystem

- Scenario
 - Alice wants to send a message (plaintext P) to Bob
 - The communication channel is insecure and can be eavesdropped
 - If Alice and Bob have previously agreed on a symmetric encryption scheme and a secret key K, the message can be sent encrypted (ciphertext C)
- Issues
 - What is a good symmetric encryption scheme?
 - What is the complexity of encrypting/decrypting?
 - What is the size of the ciphertext, relative to the plaintext?

Basic Notions

- Notation
 - Secret key K
 - Encryption function E_K(P)
 - Decryption function $D_K(C)$
 - Plaintext length typically the same as ciphertext length
 - Encryption and decryption are permutation functions (bijections) on the set of all n-bit arrays
- Efficiency
 - functions E_K and D_K should have efficient algorithms
- Consistency
 - Decrypting the ciphertext yields the plaintext
 - $D_K(E_K(P)) = P$

Attack on all schemes: Brute-Force Attack

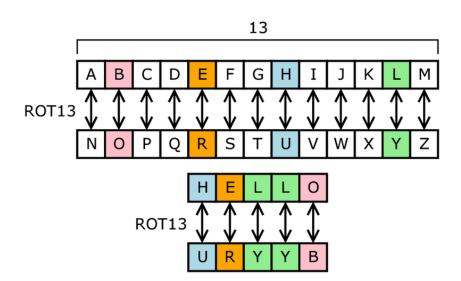
- Try all possible keys K and determine if $D_K(C)$ is a likely plaintext
 - Requires some knowledge of the structure of the plaintext (e.g., PDF file or email message)
- Key should be a sufficiently long random value to make exhaustive search attacks unfeasible

21 33 51 7 25 54 6 6 42 58 6 7 36 55 6	7 4 2 9	18 36 23 2 25 42 27 44	55 68 59 73	12 30 33 57 74 14 22 36 47 61 8 25 46 63 7 26 42 48 66 11 21 43 50 68	9 24 39 5 5 18 40 3 19 1 22 4 7 16
32 56 73 35 46 75 60 62 1 47 65 2 49 67	2 7 12 14	17 43	60 65	2 17 33 47 6 14 19 32 53 10 22 54 5 16 43 56 8 29 38 6	52 12 3 71 15 7 67 14 665 7
56 64 59 68 53 74 5 70	12 1 10 2 3 2	26 44 20 39 27 555	60 71 46 72 49 70 57 75	9 24 35 2 12 20 37 4 30	55 65 60 66 58 75

Candidate scheme: Substitution Ciphers

- Each letter is uniquely replaced by another
- There are 26! possible substitution ciphers

• One popular substitution "cipher" for some Internet posts is ROT13



Or...Substitution Boxes

- Substitution can also be done on binary numbers.
- Such substitutions are usually described by substitution boxes, or S-boxes.

	00						0	1	2	3
00	0011 1010 1110	0100	1111	0001	· ·			8		
01	1010	0110	0101	1011		1	10	6	5	11
10	1110	1101	0100	0010		2	14	13	4	2
11	0111	0000	1001	1100		3	7	0	9	12
	(a)			(b)						

Figure 8.3: A 4-bit S-box (a) An S-box in binary. (b) The same S-box in decimal.

Attack on Substitution ciphers: Frequency Analysis

- Letters in a natural language, like English, are not uniformly distributed
- Knowledge of letter frequencies, including pairs and triples can be used in cryptologic attacks against substitution ciphers

a:	8.05%	b:	1.67%	C:	2.23%	d:	5.10%
e:	12.22%	f:	2.14%	g:	2.30%	h:	6.62%
i:	6.28%	j:	0.19%	k:	0.95%	1:	4.08%
m:	2.33%	n:	6.95%	0:	7.63%	p:	1.66%
q:	0.06%	r:	5.29%	s:	6.02%	t:	9.67%
u:	2.92%	v:	0.82%	w:	2.60%	x:	0.11%
y:	2.04%	z:	0.06%				

Letter frequencies in the book *The Adventures of Tom Sawyer*, by Twain.

What would a great symmetric encryption scheme satisfy?

- What if we could devise a system such that we can encrypt and the ciphertext does not reveal anything about the plaintext (apart from its length)
- Let's express it mathematically

Perfect security

- Pick messages m_1 and m_2
- Pick a ciphertext c
- Encrypt m₁
- Encrypt m₂
- Compute the probability $Pr[Enc(m_1)=c]$ (over the choice of the random key)
- Compute the probability $Pr[Enc(m_2)=c]$ (over the choice of the random key)
- Enc is secure if for all messages m_1 and m_2 and for all ciphertexts c
 - $Pr[Enc(m_1)=c]=Pr[Enc(m_2)=c]$

One-time pad

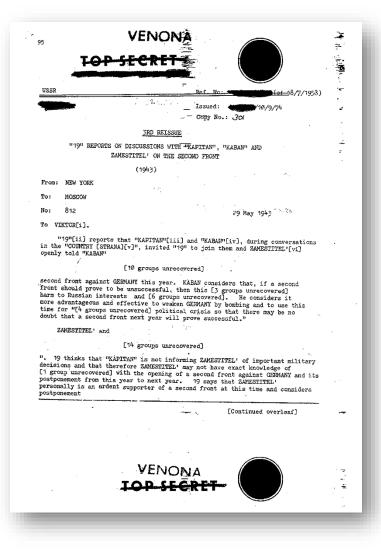
- $E_{K}(A)$: On input plaintext A, compute ciphertext B=A XOR K
- D_K(B): On input ciphertext B, compute plaintext A=B XOR K
- Correctness: B XOR K = (A XOR K) XOR K = A XOR 0 = A
- Security?
 - Note that $Enc_{K}(m_{1})=c$ is the event m_{1} XOR K = c which is the event $K = m_{1}$ XOR c
 - K is chosen at random (irrespective of m_1 and m_2 , and therefore the probability is 2⁻ⁿ
 - Namely ciphertext does not reveal anything about the plaintext

Key space and message space in one-time pad

- Key space should be at least equal to the message space
- Suppose not and the key space is missing one element and does not contain 0000000...00
- For a given c, there exists a message m such that
 - Pr[Enc(m) = c] = 0
 - E.g., If key does not contain 000000000...00, then m = c
 - But for all other messages m' that are not equal to c we have that
 - $Pr[Enc(m') = c] > 0 = 1/(2^{n}-1)$ (why is that?)
 - Therefore the definition does not hold.
 - In particular, if I see a ciphertext, I have excluded one possibility

One-time pad is not practical

- In spite of their perfect security, one-time pads have some weaknesses
- The key has to be as long as the plaintext
- Keys can never be reused
 - Repeated use of one-time pads compromised communications during the cold war



Public domain declassified government image from

https://www.cia.gov/library/center-for-the-study-of-intelligence/csi-publications/books-and-monographs/venona-soviet-espionage-and-the-american-response-1939-1957/part2.htm

What do we want to use in practice?

- Size: Small, one-time key (128 bits) and also encrypting the same thing twice should give different things
- Security: It turns out that **perfect secrecy** is very strong if we want to achieve both small key and one key
 - How about if we improve the best strategy of the attacker, which is still going to be really bad for practical purposes
- Answer: Computational Secrecy
- Intution: The ciphertext does not reveal anything about the plaintext as long as our attacker runs in time polynomial (like all machines in this class)
- If attacker can run in time 2^{size_of_key}, all bets are off
- But this is too long...

Pseudorandom permutations (PRPs)

- We say that a length-preserving keyed function F: $\{0,1\}^k \times \{0,1\}^n \rightarrow \{0,1\}^n$, is a keyed permutation if and only if each F_k is a bijection
- Also, it is pseudorandom if an adversary could not distinguish between the following two worlds with probability more than $\frac{1}{2}+2^{+1}$
 - He sends *x* to World1, World1 chooses a random permutation A and returns A[x]
 - He sends x to World2, World2 chooses a random key k and returns $F_k(x)$
- How do we encrypt using PRPs a message m of n bits?
- First attempt: Pick secret key k. Return F_k(m). Problem?
 - **Enc**_k(m): $c := \langle r, F_k(r) \oplus m \rangle$
 - where $r \leftarrow \{0,1\}^n$ is chosen at uniform random
 - **Dec**_k(c): given c= $\langle r, s \rangle$, m := $F_k(r) \oplus s$
- Let's call the above scheme First_Symmetric

Question 2

• Why First_Symmetric is secure?

Intuitively this is secure: so long as r is not used for different messages, $F_k(r)$ should look completely random

• But this is just intuition

Semantic security (CPA)

- I give you a symmetric encryption scheme (Enc,Dec,K)
- What do you need to prove in order to say that it is secure?
- A strong notion used is "semantic security"
- We are going to define it as an interaction between the adversary A and a trusted party T that has the secret key.
- Informally:
 - 1. T picks a random secret key
 - 2. A picks messages m_i and receives ciphertexts Enc_K(m_i) from T.
 - **3.** A picks message m_0 and m_1 and sends them to **T**.
 - 4. T flips a coin b and computes $t_b = Enc_K(m_b)$.
 - **5. T** sends t_b to the **A**.
- The scheme is secure if A has no better chance of finding whether t_b corresponds to m_0 or m_1 than $\frac{1}{2}+2^{1}$
- This should hold even if it is repeated many (polynomial) times

Question 3

• What behavior of the adversary does this definition model?

• Think emails...

Question 4

• Why **First_Symmetric** without randomness r is **not** semantically secure?

• Provide an attack where the adversary's chance of finding where t_b corresponds to is 1.

Task 1

• Prove First_Symmetric is semantically secure

- Suppose it is not. That means that the adversary A, given
 - m_0 and m_1
 - $c_b = F_k(r) \oplus m_b$ (where b = 0 or b = 1)

can figure out whether b = 0 or b = 1. But due to the "randomness" of $F_k(r)$, $F_k(r)$ appears "random", so $F_k(r) \oplus m_b$ appears "random" and does not give any information about m_b , a contradiction.

More advanced security (CCA)

- Informally:
 - **T** picks a random secret key
 - A picks messages m_i and receives ciphertexts Enc_K(m_i) from T.
 - A picks message m_0 and m_1 and sends them to **T**.
 - **T** flips a coin b and computes $t_b = Enc_K(m_b)$.
 - **T** sends t_b to the **A**.
 - A sends a ciphertext of its choice, different than t_b , for decryption
 - The scheme is secure if A has no better chance of finding whether t_b corresponds to m_0 or m_1 than $\frac{1}{2}+2^{1}$
- This should hold even if it is repeated many (polynomial) times

Question 5

- What behavior of the attacker does this model?
- Lunch-time attacks...

Is First_Symmetric CCA-secure?

- Ask encryption for $m_0 = 0000...00$ and $m_1 = 1111...11$
- You get $c_b = \langle s_b, r_b \rangle$, where $s_b = F_k(r_b) \oplus m_b$
- How to find b is you are allowed to send decryption queries?
- Construct new new ciphertext
 - $c = \langle s_b \oplus 1000...00, r_b \rangle = \langle F_k(r_b) \oplus m_b \oplus 1000...00, r_b \rangle$
 - Decryption of this will give $m_b \oplus 1000...00$
 - 1000...00, if s_b was encryption of $m_0 = 0000...00$
 - 01111...1, if s_b was encryption of $m_1 = 1111111...1111$
- So we can distinguish!
- Conclusion: First_Symmetric is not CCA-secure.

How do we construct a PRP in practice?

- What is the main property we want?
 - Even a single bit change in the input should yield a completely independent result
- This implies that
 - Every bit of the input should affect every bit of the output...
 - Or...every change in an input bit should change each output bit with probability roughly $\frac{1}{2}$
- This takes some work...

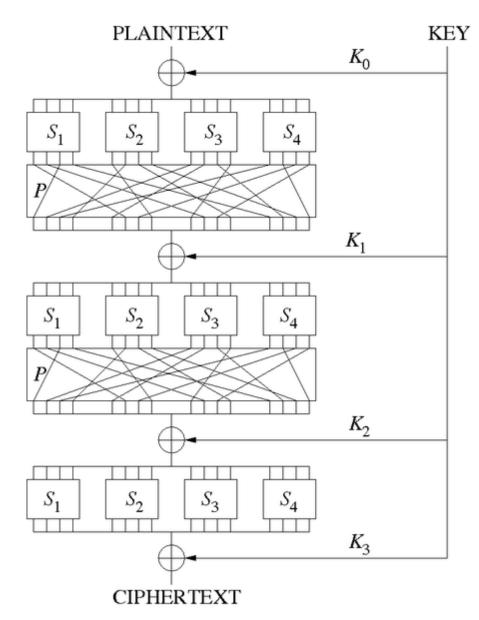
A first idea (Shannon)

- Construct block cipher from many smaller random (or random-looking) permutations
- Confusion: e.g., for block size 128, uses 16 8-bit random permutation
 - $F_k(x) = f_1(x_1) \dots f_{16}(x_{16})$
 - Where key k selects 16 8-bit random permutation.
 - Does $F_k(\cdot)$ look like a random permutation?
- **Diffusion:** bits of $F_k(x)$ are permuted (re-ordered)
- Multiple rounds of confusion and diffusion are used.

Substitution-Permutation Networks

- A variant of the Confusion-Diffusion Paradigm
 - $\{f_i\}$ are fixed and are called s-boxes
 - Sub-keys are XORed with intermediate result
 - Sub-keys are generated from the master key according to a key schedule
- Each round has three steps
 - Message XORed with sub-key
 - Message divided and went through s-boxes
 - Message goes through a mixing permutation (bits reordered)

Substitution-Permutation Networks



Design Principles:

---A single-bit difference in each s-box results in changes in at least two bits in output

---The mixing permutation distributes the output bits of any s-box into multiple s-boxes

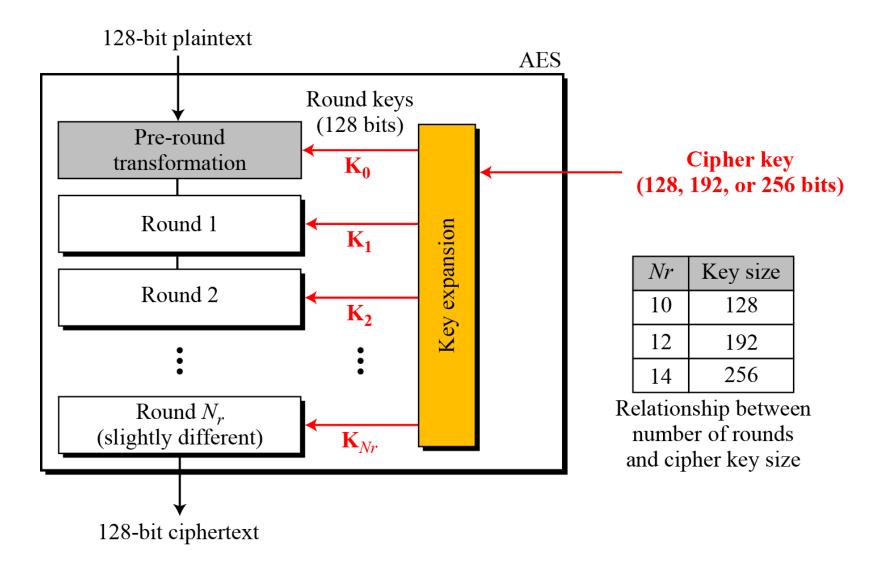
The above, with sufficient number of rounds, achieves the avalanche effect.

AES encryption, the algorithm of choice in today's Internet communications is using the above framework

Question 6

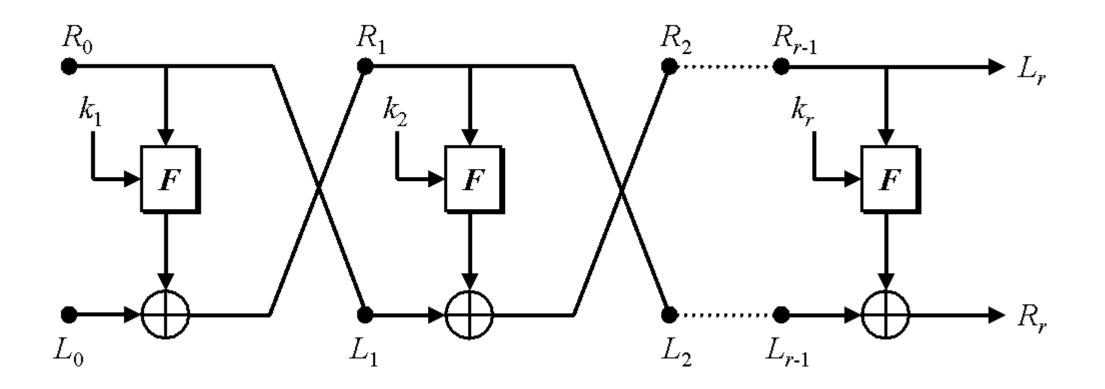
- Say you have the pair of ciphertext and plaintext.
- How can you attack one round?
- How can you attack two rounds?

AES structure



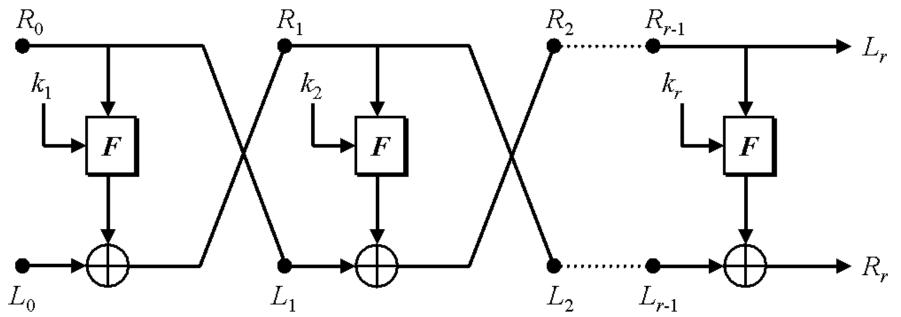
Second approach: Feistel Network

• Feistel Networks



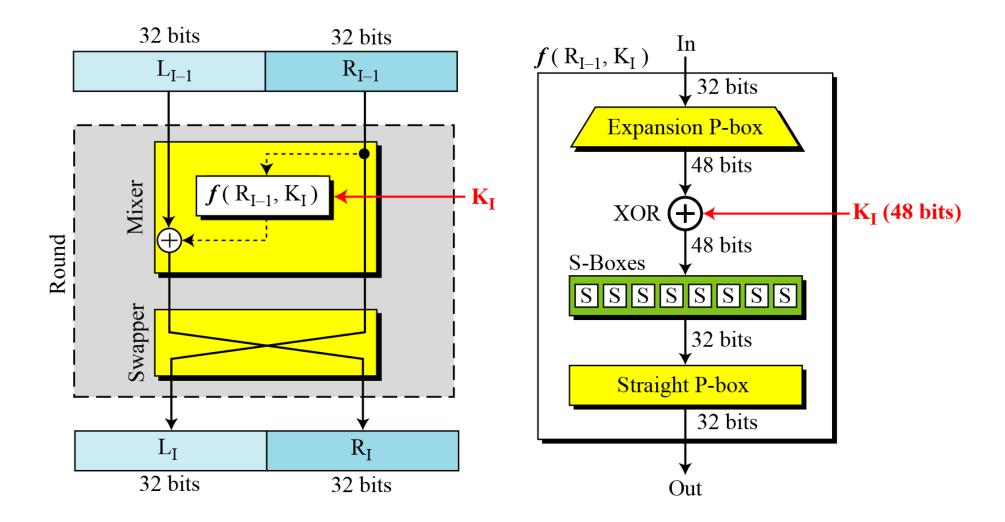
Feistel Network

- Main difference: F does not have to be invertible
- In practice: It is a Substitution-permutation network
- DES was based on that (broken, not because of bad design, but due to the size of the key)



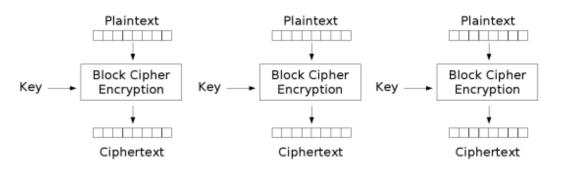
DES function

The DES function applies a 48-bit key to the rightmost 32 bits to produce a 32-bit output



Block Cipher Modes

- So far we have described how to encrypt a string of fixed length
- How do we encrypt a 4GB file?
- Electronic Code Book (ECB) Mode (is the simplest):
 - Block P[i] encrypted into ciphertext block $C[i] = E_K(P[i])$
 - Block C[i] decrypted into plaintext block M[i] = D_K(C[i])



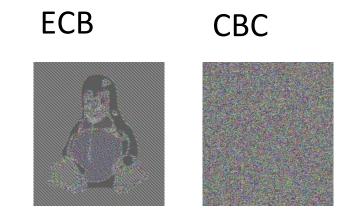
Electronic Codebook (ECB) mode encryption

Strengths and Weaknesses of ECB

- Strengths:
 - Is very simple
 - Allows for parallel encryptions of the blocks of a plaintext
 - Can tolerate the loss or damage of a block

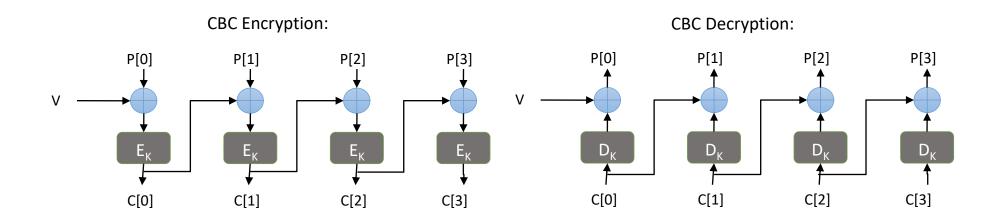
• Weakness:

 Documents and images are not suitable for ECB encryption since patterns in the plaintext are repeated in the ciphertext:



Cipher Block Chaining (CBC) Mode

- In Cipher Block Chaining (CBC) Mode
 - The previous ciphertext block is combined with the current plaintext block $C[i] = E_K(C[i-1] \oplus P[i])$
 - C[-1] = V, a random block separately transmitted encrypted (known as the initialization vector)
 - Decryption: $P[i] = C[i-1] \oplus D_K(C[i])$



Question 7

- Is CBC encryption parallelizable?
- Is CBC decryption parallelizable?

OpenSSL encryption decryption

• openssl aes-256-cbc -a -in plaintext.txt -out ciphertext.txt -base64

• openssl aes-256-cbc -a -d -in ciphertext.txt -out plaintext.txt