ENEE 457: Computer Systems Security 09/07/16

Lecture 3 Symmetric Key Encryption I: One-Time Pad and Pseudorandom Permutations

Charalampos (Babis) Papamanthou

Department of Electrical and Computer Engineering University of Maryland, College Park

Symmetric Cryptosystem

- Scenario
 - Alice wants to send a message (plaintext P) to Bob
 - The communication channel is insecure and can be eavesdropped
 - If Alice and Bob have previously agreed on a symmetric encryption scheme and a secret key K, the message can be sent encrypted (ciphertext C)
- Issues
 - What is a good symmetric encryption scheme?
 - What is the complexity of encrypting/decrypting?
 - What is the size of the ciphertext, relative to the plaintext?

Basic Notions

- Notation
 - Secret key K
 - Encryption function $E_K(P)$
 - Decryption function $D_K(C)$
 - Plaintext length typically the same as ciphertext length
 - Encryption and decryption are permutation functions (bijections) on the set of all n-bit arrays
- Efficiency
 - functions E_K and D_K should have efficient algorithms
- Consistency
 - Decrypting the ciphertext yields the plaintext
 - $D_K(E_K(P)) = P$

Attack on all schemes: Brute-Force Attack

- Try all possible keys K and determine if $D_K(C)$ is a likely plaintext
 - Requires some knowledge of the structure of the plaintext (e.g., PDF file or email message)
- Key should be a sufficiently long random value to make exhaustive search attacks unfeasible

21 33 51 7 25 2 54 6 7 36 55 6	75 4 2 9 9 9 10	5 18 23 25 25 27	36 57 55 42 59 44 56	67 1 68 73 670	4 22 36 8 25 6 7 26 42 11 21 4	47 61 46 63 2 48 66 3 50 68	24 39 5 5 18 40 3 19 1 22 4 7 16
132 56 73 35 46 75 60 62 1 47 65 2 49 67	2 7 12 14 10	29 24 23 17 20	36 60 41 52 43 4 31 5	0 65 2 61 0 69 7 72 5 74	2 17 3 14 19 10 22 5 16 8 29	33 47 62 32 53 7 32 53 7 49 0 43 56 9 38 60	2 12 3 1 15 7 67 14 65 7 73 8
56 64 59 68 13 74 5 70	12 10 3 11	26 4 20 3 27 4 21 4	14 6 39 4 39 4 13 5	0 71 6 72 9 70 7 75	9 12 4 3	16850 24 35 5 20 37 30 (100 20 21 41 21 41	55 65 60 66 58 75 59 6

Candidate scheme: Substitution Ciphers

- Each letter is uniquely replaced by another
- There are 26! possible substitution ciphers

• One popular substitution "cipher" for some Internet posts is ROT13

Or...Substitution Boxes

- Substitution can also be done on binary numbers.
- Such substitutions are usually described by substitution boxes, or S-boxes.

	00	01	10	11		0	1	2	3
00	0011	0100	1111	0001	 0	3	8	15	1
01	1010	0110	0101	1011	1	10	6	5	11
10	1110	1101	0100	0010	2	14	13	4	2
11	0111	0000	1001	1100	3	7	0	9	12
	I	(a)					(b)		

Figure 8.3: A 4-bit S-box (a) An S-box in binary. (b) The same S-box in decimal.

Attack on Substitution ciphers: Frequency Analysis

- Letters in a natural language, like English, are not uniformly distributed
- Knowledge of letter frequencies, including pairs and triples can be used in cryptologic attacks against substitution ciphers

-				r			
a:	8.05%	b:	1.67%	C:	2.23%	d:	5.10%
e:	12.22%	f:	2.14%	g:	2.30%	h:	6.62%
i:	6.28%	j:	0.19%	k:	0.95%	1:	4.08%
m:	2.33%	n:	6.95%	0:	7.63%	p:	1.66%
q:	0.06%	r:	5.29%	s:	6.02%	t:	9.67%
u:	2.92%	v:	0.82%	w:	2.60%	x:	0.11%
y:	2.04%	z:	0.06%				

Letter frequencies in the book *The Adventures of Tom Sawyer*, by Twain.

What would a great symmetric encryption scheme satisfy?

- What if we could devise a system such that we can encrypt and the ciphertext does not reveal anything about the plaintext (apart from its length)
- Let's express it mathematically

Perfect security

- Pick messages m_1 and m_2
- Pick a ciphertext c
- Encrypt m₁
- Encrypt m₂
- Compute the probability $Pr[Enc(m_1)=c]$ (over the choice of the random key)
- Compute the probability $Pr[Enc(m_2)=c]$ (over the choice of the random key)
- Enc is secure if for all messages m_1 and m_2 and for all ciphertexts c
 - $Pr[Enc(m_1)=c]=Pr[Enc(m_2)=c]$

One-Time Pads: Achieving perfect security

- There is one type of substitution cipher that is absolutely unbreakable
 - The one-time pad was invented in 1917 by Joseph Mauborgne and Gilbert Vernam
 - We use a block of shift keys, $(k_1, k_2, ..., k_n)$, to encrypt a plaintext, M, of length n, with each shift key being chosen uniformly at random
- Since each shift is random, every ciphertext is equally likely for any plaintext

Algorithms of one-time pad

- $E_{K}(A)$: On input plaintext A, compute ciphertext B=A XOR K
- $D_{K}(B)$: On input ciphertext B, compute plaintext A=B XOR K
- Correctness: B XOR K = (A XOR K) XOR K = A XOR 0 = A
- Security?
 - Note that $Enc_{K}(m_{1})=c$ is the event m_{1} XOR K = c which is the event $K = m_{1}$ XOR c
 - K is chosen at random (irrespective of m_1 and m_2 , and therefore the probability is 2⁻ⁿ
 - Namely ciphertext does not reveal anything about the plaintext

Key space and message space in one-time pad

- Key space should be at least equal to the message space
- Suppose not and the key space is missing one element and does not contain 0000000...00
- For a given c, there exists a message m such that
 - Pr[Enc(m) = c] = 0
 - E.g., If key does not contain 000000000...00, then m = c
 - But for all other messages m' that are not equal to c we have that
 - $Pr[Enc(m') = c] > 0 = 1/(2^{n}-1)$ (why is that?)
 - Therefore the definition does not hold.
 - In particular, if I see a ciphertext, I have excluded one possibility

One-time pad is not practical

- In spite of their perfect security, one-time pads have some weaknesses
- The key has to be as long as the plaintext
- Keys can never be reused
 - Repeated use of one-time pads compromised communications during the cold war

Public domain declassified government image from

https://www.cia.gov/library/center-for-the-study-of-intelligence/csi-publications/books-and-monographs/venona-soviet-espionage-and-the-american-response-1939-1957/part2.htm

What do we want to use in practice?

• Usability: Same key all the time

• Is this enough? What are two problems?

What do we want to use in practice?

- Size: Small key (128 bits)
- Security: It turns out that **perfect secrecy** is very strong if we want to achieve both small key and one key
 - How about if we improve the best strategy of the attacker, which is still going to be really bad for practical purposes
- Answer: Computational Secrecy
- Intution: The ciphertext does not reveal anything about the plaintext as long as our attacker runs in time polynomial (like all machines in this class)
- If attacker can run in time 2^{size_of_key}, all bets are off
- But this is too long...

Pseudorandom permutations (PRP)

- $P_k(x) = y$, where x\in X, y\in Y and k\in K.
- A bijection (therefore domain and range are the same)
- k not necessarily from the same domain
- E.g., k can be 128 bits, while x and y can be 256 bits
- Output is pseudorandom (cannot be distinguished from a truly random number)
- Assume we have a P_k(x). How do we build a semantically-secure symmetric encryption scheme?
 - Pick a random r
 - Enc_k(x) = P_k(r) XOR x , r
 - $Dec_k(c) = P_k(r) XOR c$
- How can you prove the above is semantically-secure?
 - Prove that if attacker can distinguish, then he can break the PRP