ENEE 459-C Computer Security

Message authentication

Data Integrity and Source Authentication

- Encryption does not protect data from modification by another party.
 - Why?
- Need a way to ensure that data arrives at destination in its original form as sent by the sender and it is coming from an authenticated source.

Hash Functions

- A hash function maps a message of an arbitrary length to a m-bit output
 - output known as the fingerprint or the message digest
- What is an example of hash functions?
 - Given a hash function that maps Strings to integers in [0,2^{32}-1]
 - $F(x) = A x + b \mod q$, where x = 0,1,...,T where T > q
 - Hash function used in the hash table data structure

Using Hash Functions for Message Integrity

- Method 1: Uses a Hash Function h, assuming an authentic (adversary cannot modify) channel for short messages
 - Transmit a message M over the normal (insecure) channel
 - Transmit the message digest h(M) over the secure channel
 - When receiver receives both M' and h, how does the receiver check to make sure the message has not been modified?
- This is insecure. How to attack it?
- A hash function is a many-to-one function, so collisions can happen.

Non-crypto Hash (1)

- Data $X = (X_0, X_1, X_2, ..., X_{n-1})$, each X_i is a bit
- $hash(X) = X_0 + X_1 + X_2 + ... + X_{n-1}$
- What is the compression of this hash?
- Show how to attack it

Non-crypto Hash (2)

- Data $X = (X_0, X_1, X_2, ..., X_{n-1})$
- Suppose hash is
 - $h(X) = nX_0 + (n-1)X_1 + (n-2)X_2 + ... + 1 \cdot X_{n-1}$
- What is the compression of this hash?
- Show how to attack it

Non-crypto Hash (3)

- Cyclic Redundancy Check (CRC)
- Essentially, CRC is the remainder in a long division calculation
- Find a collision (modulo x⁸+1)
- Good for detecting burst errors
- Easy to construct collisions
- CRC sometimes mistakenly used in crypto applications (WEP)

Cryptographic Hash Functions

Given a function $h:X \rightarrow Y$, then we say that h is:

- preimage resistant (one-way):
 if given y ∈Y it is computationally infeasible to find a value x ∈X s.t. h(x) = y
- 2-nd preimage resistant (weak collision resistant): if given $x \in X$ it is computationally infeasible to find a value $x' \in X$, s.t. $x' \neq x$ and h(x') = h(x)
- collision resistant (strong collision resistant): if it is computationally infeasible to find two distinct values $x', x \in X$, s.t. h(x') = h(x)

Relations between properties

- collision resistance ⇒ 2nd preimage resistance
- 2nd preimage resistance ? preimage resistance