ENEE 459-C Computer Security

Symmetric key encryption

Symmetric Cryptosystem

- Scenario
 - Alice wants to send a message (plaintext P) to Bob
 - The communication channel is insecure and can be eavesdropped
 - If Alice and Bob have previously agreed on a symmetric encryption scheme and a secret key K, the message can be sent encrypted (ciphertext C)
- Issues
 - What is a good symmetric encryption scheme?
 - What is the complexity of encrypting/decrypting?
 - What is the size of the ciphertext, relative to the plaintext?

$$\begin{array}{ccc} \mathsf{P} & \longrightarrow & \mathsf{encrypt} & \longrightarrow & \mathsf{C} & \longrightarrow & \mathsf{decrypt} & \longrightarrow & \mathsf{P} \\ & & \uparrow & & & \uparrow & & \\ & & \mathsf{K} & & & \mathsf{K} \end{array}$$

Basics

Notation

- Secret key K
- Encryption function E_K(P)
- Decryption function D_K(C)
- Plaintext length typically the same as ciphertext length
- Encryption and decryption are permutation functions (bijections) on the set of all n-bit arrays

Efficiency

• functions E_K and D_K should have efficient algorithms

Consistency

- Decrypting the ciphertext yields the plaintext
- $D_{K}(E_{K}(P)) = P$

Attacks

- Attacker may have
 - a) collection of ciphertexts (ciphertext only attack)
 - b) collection of plaintext/ciphertext pairs (known plaintext attack)
 - c) collection of plaintext/ciphertext pairs for plaintexts selected by the attacker (chosen plaintext attack)
 - d) collection of plaintext/ciphertext pairs for plaintexts and ciphertexts selected by the attacker (chosen ciphertext attack or lunchtime attack)

Brute-Force Attack

- Try all possible keys K and determine if D_K(C) is a likely plaintext
 - Requires some knowledge of the structure of the plaintext (e.g., PDF file or email message)
- Key should be a sufficiently long random value to make exhaustive search attacks unfeasible

21 33 51 7 25 3 54 6 6 42 58 62 7 36 55 69	5729	5 18 23 25 27	36 57 55 42 59 44 56	67 14 68 8 73 7 70 1	4 22 36 3 25 6 7 26 42 11 21 43	47 61 46 63 48 66 3 50 68	24 39 5 5 18 40 3 19 1 22 4 7 16
16850 00	B	1	850 G	0	B L 16	850 G O	BI
32 56 73	2	29	36 60	65	2 17 3	33 47 6	2 12 3
35 46 75		24	+1 52	61	14 19	32 53 1	<u>1 15</u>
60 62	12	23	50	69	10 22	3706 49	67 14
1 47 65	14	17 4	13 47	72	5 16	43 56	65 7
2 49 67	10	20 3	31 55	74	8 29	38 60	73
			-833	13			
GO		16	850 G		BI	16850	
56/64	12	26 4	4 60) 71	9 2	4 35	55 65
50 68	10	20 3	39 46	3 72	12 2	20 37	60 66
55 00	10					ON FREE	59 75
3 74	3 2	27	333 4	9 70	4	JU 4208	5010
	44 1	14	2 5	7 75	3	21 4	1 59 6
5/70	11 4		CC	113	-		DEAL

Image by Michael Cote from http://commons.wikimedia.org/wiki/File:Bingo_cards.jpg

Substitution Ciphers

- Each letter is uniquely replaced by another
- There are 26! possible substitution ciphers
- One popular substitution "cipher" for some Internet posts is ROT13 13

Substitution Boxes

- Substitution can also be done on binary numbers.
- Such substitutions are usually described by substitution boxes, or S-boxes.

	00	01	10	11		0	1	2	3
00	0011	0100	1111	0001	 0	3	8	15	1
01	1010	0110	0101	1011	1	10	6	5	11
10	1110	1101	0100	0010	2	14	13	4	2
11	0111	0000	1001	1100	3	7	0	9	12
	'	(a)					(b)		

Figure 8.3: A 4-bit S-box (a) An S-box in binary. (b) The same S-box in decimal.

Frequency Analysis

- Letters in a natural language, like English, are not uniformly distributed
- Knowledge of letter frequencies, including pairs and triples can be used in cryptologic attacks against substitution ciphers

a:	8.05%	b:	1.67%	c:	2.23%	d:	5.10%
e:	12.22%	f:	2.14%	g:	2.30%	h:	6.62%
i:	6.28%	j:	0.19%	k:	0.95%	1:	4.08%
m:	2.33%	n:	6.95%	o:	7.63%	p:	1.66%
q:	0.06%	r:	5.29%	s:	6.02%	t:	9.67%
u:	2.92%	v:	0.82%	w:	2.60%	x:	0.11%
y:	2.04%	z:	0.06%				

Letter frequencies in the book *The Adventures of Tom Sawyer*, by Twain.

One-Time Pads

- There is one type of substitution cipher that is absolutely unbreakable
 - The one-time pad was invented in 1917 by Joseph Mauborgne and Gilbert Vernam
 - We use a block of shift keys, (k₁, k₂, ..., k_n), to encrypt a plaintext, M, of length n, with each shift key being chosen uniformly at random
- Since each shift is random, every ciphertext is equally likely for any plaintext

Algorithms

- K ← KeyGen(n): Pick a random key K of n bits
- E_K(A): On input plaintext A, compute ciphertext B=A XOR K
- D_K(B): On input ciphertext B, compute plaintext A=B XOR K
- Correctness: B XOR K= (A XOR K) XOR
 K= A XOR 0 = A
- Security?

Perfect security

- For all messages m₁ and m₂ and for all ciphertexts c
- $Pr[K \leftarrow KeyGen(n): E_K(m_1)=c]=$ $Pr[K \leftarrow KeyGen(n): E_K(m_2)=c]$
- Proof
 - Note that Enc_K(m₁)=c is the event m₁ XOR K = c which is the event K = m₁ XOR c
 - K is chosen at random (irrespective of m₁ and m₂, and therefore the probability is 2⁻ⁿ
 - Namely ciphertext does not reveal anything about the plaintext

But...

- In spite of their perfect security, one-time pads have some weaknesses
- The key has to be as long as the plaintext
- Keys can never be reused
 - Repeated use of one-time pads compromised communications during the cold war

Public domain declassified government image from

https://www.cia.gov/library/center-for-the-study-of-intelligence/csi-publications/books-and-monographs/venona-soviet-espionage-and-the-american-response-1939-1957/part2.htm

Semantic security

- I give you a symmetric encryption scheme (Enc,Dec,K)
- What do you need to prove in order to say that it is secure?
- A strong notion used is "semantic security"
- We are going to define it as an interaction between the adversary A and a trusted party T that has the secret key.
- Informally:
 - A picks messages m_i and receives ciphertexts Enc_K(m_i) from T.
 - A picks message m₀ and m₁ and sends them to **T**.
 - T flips a coin b and computes t_b=Enc_K(m_b).
 - **T** sends t_b to the **A**.
 - The scheme is secure if A has no better chance of finding whether t_b corresponds to m₀ or m₁ than just guessing!
- This should hold even if it is repeated many (polynomial) times

Randomized encryption is important for semantic security

- Encryption should be randomized
 - For the same plaintext, it should output different ciphertexts
- How can we turn a deterministic encryption scheme into a randomized one?
 - Padding input with randomness
- Decryption should however always work