
ENEE 459-C

Computer Security

Symmetric key encryption in practice:

DES and AES algorithms



A perfect encryption of a block
 Say you have a block of n bits

 You want to encrypt it 

 You want to use the same key all the time but NOT have the problem of 
ONE TIME PAD (i.e., be semantically secure)

 Consider a bijective mapping T from {0,1}n to {0,1}n

 The pairs are computed uniformly at random

 To encrypt x, just output T[x]

 To decrypt y, just output T-1[y]

 Your secret key is T

 Problem with this approach: T has size ~ n 2n

 Can you make it randomized (and semantically-secure)?
 Encrypt x (pick random r): y=T[r] XOR x, r

 Decrypt (y,r): y XOR T[r]



Reminder: Ideal block cipher



DES algorithm



DES structure



Initial and final permutation



The table of the permutations

 The initial and final permutations are straight P-boxes that are inverses 
of each other

 They have no cryptography significance in DES



 DES uses 16 rounds
 Each round of DES is a Feistel cipher

DES round: Feistel network

 L(i) = R(i-1)
 R(i) = L(i-1) XOR f(K(i),R(i-1))



The DES function applies a 48-bit key to the rightmost 32 bits to produce a 32-bit
output

DES function



Expansion box

Since RI−1 is a 32-bit input and KI is a 48-bit key, we

first need to expand RI−1 to 48 bits



S-box and the avalanche effect

The S-boxes do the real mixing (confusion). DES

uses 8 S-boxes, each with a 6-bit input and a 4-bit

output



S-box in detail



Execute one round on 8-bit plaintext

plaintext: 0101   1111

exp-box

key: 010011 010010

s-box (see below)

p-box: [1 15 0 2 14 13 5 7 11 10 9 8 3 4 12 6]



The Advanced Encryption Standard 
(AES)

 In 1997, the U.S. National Institute for Standards and 
Technology (NIST) put out a public call for a replacement to 
DES. 

 It narrowed down the list of submissions to five finalists, and 
ultimately chose an algorithm that is now known as the 
Advanced Encryption Standard (AES).

 AES is a block cipher that operates on 128-bit blocks. It is 
designed to be used with keys that are 128, 192, or 256 bits 
long, yielding ciphers known as AES-128, AES-192, and AES-256.



AES structure



Substitution/permutation network



Data Units in AES



Transformations from block to 
state and vice versa



Text to state



Structure of each round

 To provide security,
AES uses four types
of transformations:

 substitution
 Permutation
 mixing
 key-adding



SubBytes



Tables



Example



ShiftRows

Another transformation found in a round is shifting, which
permutes the bytes



Example

 ShiftRow is used in encryption
 InvShiftRow is used in decryption



Mixing

We need an interbyte transformation that changes the bits inside a
byte, based on the bits inside the neighboring bytes. We need to mix
bytes to provide diffusion at the bit level



The MixColumns transformation operates at the column level; it transforms
each column of the state to a new column

Transforming columns



The constant matrices



Example



Algebra

 The arithmetic operations are performed in the GF(28) field

modulo (x8 + x4 + x3+ x + 1)
 Map a byte to a polynomial
 Example
{53} • {CA}=

(x6 + x4 + x + 1)(x7 + x6 + x3 + x) =

(x13 + x12 + x9 + x7) + (x11 + x10 + x7 + x5) + 

(x8 + x7 + x4 + x2) + (x7 + x6 + x3 + x) =

x13 + x12 + x11 + x10 + x9 + x8 + x6 + x5 + x4 + x3 + x2 + x

and

x13 + x12 + x11 + x10 + x9 + x8 + x6 + x5 + x4 + x3 + x2 + x

modulo x8 + x4 + x3 + x1 + 1 = (11111101111110 mod 

100011011) = {3F7E mod 11B} = {01} = 1



Add round key (final step)



Block Cipher Modes
 A block cipher mode describes the way a block cipher 

encrypts and decrypts a sequence of message blocks.

 Electronic Code Book (ECB) Mode (is the simplest):

 Block P[i] encrypted into ciphertext block C[i] = EK(P[i])

 Block C[i] decrypted into plaintext block M[i] = DK(C[i])

Public domain images from http://en.wikipedia.org/wiki/File:Ecb_encryption.png and http://en.wikipedia.org/wiki/File:Ecb_decryption.png



Strengths and Weaknesses of 
ECB

 Strengths:

 Is very simple

 Allows for parallel 
encryptions of the 
blocks of a plaintext

 Can tolerate the loss 
or damage of a block

 Weakness:
 Documents and images are not 

suitable for ECB encryption 

since patterns in the plaintext 

are repeated in the ciphertext:

ECB CBC



Cipher Block Chaining (CBC) Mode
 In Cipher Block Chaining (CBC) Mode

 The previous ciphertext block is combined with 
the current plaintext block C[i] = EK (C[i 1] 
P[i])

 C[1] = V, a random block separately transmitted 
encrypted (known as the initialization vector)

 Decryption: P[i] = C[i 1]  DK (C[i])

DK

P[0]

DK

P[1]

DK

P[2]

DK

P[3]

V

C[0] C[1] C[2] C[3]

EK

P[0]

EK

P[1]

EK

P[2]

EK

P[3]

V

C[0] C[1] C[2] C[3]

CBC Encryption: CBC Decryption:



Strengths and Weaknesses of 
CBC

 Weaknesses:

 CBC requires the 

reliable transmission of 

all the blocks 

sequentially

 CBC is not suitable for 

applications that allow 

packet losses (e.g., 

music and video 

streaming)

 Strengths:

 Doesn’t show patterns 
in the plaintext

 Is the most common 
mode

 Is fast and relatively 
simple



Java AES Encryption Example
 Source

http://java.sun.com/javase/6/docs/technotes/guides/security/crypto/CryptoSpec.html

 Generate an AES key

KeyGenerator keygen = KeyGenerator.getInstance("AES");

SecretKey aesKey = keygen.generateKey();

 Create a cipher object for AES in ECB mode and PKCS5 padding

Cipher aesCipher;

aesCipher = Cipher.getInstance("AES/ECB/PKCS5Padding");

 Encrypt

aesCipher.init(Cipher.ENCRYPT_MODE, aesKey);

byte[] plaintext = "My secret message".getBytes();

byte[] ciphertext = aesCipher.doFinal(plaintext);

 Decrypt

aesCipher.init(Cipher.DECRYPT_MODE, aesKey);

byte[] plaintext1 = aesCipher.doFinal(ciphertext); 

http://java.sun.com/javase/6/docs/technotes/guides/security/crypto/CryptoSpec.html

