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Homomorphic encryption



In the beginning, there was symmetric
encryption.
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Message:  

Key: +3

Ciphertext:
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DWWDFN DW GDZQ



… and some people were happy.
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… and more people were happy.
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… if only RSA worked additively …

we could compute sums …

and averages …

and tally elections …



An additive encryption homomorphism …



An additive encryption homomorphism …

𝐸 𝑚, 𝑟 = 𝑟𝑒𝑐𝑚



𝐸 𝑚1, 𝑟1 = 𝑟1
𝑒𝑐𝑚1 𝐸 𝑚2, 𝑟2 = 𝑟2

𝑒𝑐𝑚2



𝐸 𝑚1, 𝑟1 = 𝑟1
𝑒𝑐𝑚1 𝐸 𝑚2, 𝑟2 = 𝑟2

𝑒𝑐𝑚2

𝐸 𝑚1, 𝑟1 × 𝐸 𝑚2, 𝑟2



𝐸 𝑚1, 𝑟1 = 𝑟1
𝑒𝑐𝑚1 𝐸 𝑚2, 𝑟2 = 𝑟2

𝑒𝑐𝑚2

𝐸 𝑚1, 𝑟1 × 𝐸 𝑚2, 𝑟2
= 𝑟1

𝑒𝑐𝑚1 × 𝑟2
𝑒𝑐𝑚2



𝐸 𝑚1, 𝑟1 = 𝑟1
𝑒𝑐𝑚1 𝐸 𝑚2, 𝑟2 = 𝑟2

𝑒𝑐𝑚2

𝐸 𝑚1, 𝑟1 × 𝐸 𝑚2, 𝑟2
= 𝑟1

𝑒𝑐𝑚1 × 𝑟2
𝑒𝑐𝑚2

= (𝑟1𝑟2)
𝑒𝑐𝑚1+𝑚2



𝐸 𝑚1, 𝑟1 = 𝑟1
𝑒𝑐𝑚1 𝐸 𝑚2, 𝑟2 = 𝑟2

𝑒𝑐𝑚2

𝐸 𝑚1, 𝑟1 × 𝐸 𝑚2, 𝑟2
= 𝑟1

𝑒𝑐𝑚1 × 𝑟2
𝑒𝑐𝑚2

= (𝑟1𝑟2)
𝑒𝑐𝑚1+𝑚2

= 𝐸(𝑚1 +𝑚2, 𝑟1𝑟2)



𝐸 𝑚1, 𝑟1 = 𝑟1
𝑒𝑐𝑚1 𝐸 𝑚2, 𝑟2 = 𝑟2

𝑒𝑐𝑚2

𝐸 𝑚1, 𝑟1 × 𝐸 𝑚2, 𝑟2
= 𝑟1

𝑒𝑐𝑚1 × 𝑟2
𝑒𝑐𝑚2

= (𝑟1𝑟2)
𝑒𝑐𝑚1+𝑚2

= 𝐸(𝑚1 +𝑚2, 𝑟1𝑟2)

The product of encryptions of two messages is 
an encryption of the sum of the two messages.
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… because {XOR,AND} is Turing-complete …

(any function can be written as a combination of XOR and AND

gates)

Example: Searching a database 
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i1i0

answer= DBI
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WHY does ADD AND MULTIPLY help?

… because {XOR,AND} is Turing-complete …

… if you can compute XOR and AND on encrypted bits…

… you can compute ANY function on encrypted inputs…

E(x1) E(x2) E(x3) E(x4)

E(x3 AND x4)E(x1 XOR x2)

E(f(x1,x2,x3,x4))



This is A M A Z I N G!

Private              Search

Private Cloud computing



This is A M A Z I N G!

Private              Search

Private Cloud computing

In general,

Delegate processing of data

without giving away access to it



People tried to compute both AND and XOR on 
encrypted bits  …

… for years …

… and years …

… with no success.
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… and some bold attempts [Fellows-Koblitz] …

Josh’s 

system

MANY add

ZERO mult

Fully homomorphic

MANY add

MANY mult

MANY add

1    mult

Boneh,Goh & Nissim

… which were quickly broken …



… until, in October 2008 …



… until, in October 2008 …

… Craig Gentry came up with the first 

fully homomorphic encryption scheme …



How does it work?

What is the magic?



Gentry’s scheme was complex … 

… it used advanced algebraic number theory … 



Some of us asked: can we make this really simple? … 



TODAY: Secret-key (Symmetric-key) Encryption
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Secret key: large odd number p

To Encrypt a bit b:
– pick a (random) “large” multiple of p, say q·p

– pick a (random) “small” number 2·r+b

– Ciphertext c = q·p+2·r+b

0 p 2p 3p-3p -2p -p

(this is even if b=0, and odd if b=1)

To Decrypt a ciphertext c:
Taking (c mod p) mod 2 recovers the plaintext 



How secure is this?

… if there were no noise (think r=0)

0 p 2p 3p-3p -2p -p

the “noise” =  

2·r+b

… and I give you two encryptions of 0 (q1p & q2p)

… then you can recover the secret key p

= GCD(q1p, q2p)



How secure is this?

… but if there is noise

0 p 2p 3p-3p -2p -p

the “noise” =  

2·r+b

… the GCD attack doesn’t work

… and neither does any attack (we believe) 

… this is called the approximate GCD assumption
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XORing two encrypted bits:

0 p 2p 3p-3p -2p -p

the “noise” =  

2·r+b

– c1 = q1·p + (2·r1 + b1)

– c1+c2 = p·(q1 + q2) + 2·(r1+r2) + (b1+b2)

Odd if b1=0, b2=1 (or)

b1=1, b2=0

Even if b1=0, b2=0 (or)

b1=1, b2=1

– c2 = q2·p + (2·r2 + b2)



XORing two encrypted bits:

0 p 2p 3p-3p -2p -p

the “noise” =  

2·r+b

– c1 = q1·p + (2·r1 + b1)

– c1+c2 = p·(q1 + q2) + 2·(r1+r2) + (b1+b2)

lsb= b1 XOR b2

– c2 = q2·p + (2·r2 + b2)
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2·r+b
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lsb= b1 AND b2
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0 p 2p 3p-3p -2p -p

the “noise” =  

2·r+b

the noise grows!

– c1+c2 = p·(q1 + q2) + 2·(r1+r2) + (b1+b2)

noise= 2 * (initial noise)

noise = (initial noise)2

– c1c2 = p·(c2·q1+c1·q2-q1·q2) + 2·(r1r2+r1b2+r2b1) + b1b2



0 17 34 51-51 -34 -17

noise=
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the noise grows!

… so what’s the problem?
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the noise grows!

… so what’s the problem?

If the |noise| > p, then … 

decryption might output an incorrect bit 

Example: E(b) = pq + 2r +b

If 2r+b<p then it is always (E(b) mod p)mod 2 =b

If 2r +b>p, then imagine 2r+b=p+1

If b=0, then (E(b) mod p)mod 2 =1, not equal to 0
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So, what did we accomplish? 

… we can do lots of additions and

… some multiplications

… enough to do many useful tasks, e.g.,

database search, spam filtering etc. 

But I promised much more …

(= a “somewhat homomorphic” encryption)



Josh’s 

system

MANY add

ZERO mult

Fully homomorphic

MANY add

MANY mult

MANY add

1    mult

Boneh,Goh & Nissim

WE ARE HERE!



Josh’s 

system

MANY add

ZERO mult

Fully homomorphic

MANY add

MANY mult

MANY add

1    mult

Boneh,Goh & Nissim

Gentry’s “bootstrapping theorem” …

WE ARE HERE!



Josh’s 

system

MANY add

ZERO mult

Fully homomorphic

MANY add

MANY mult

MANY add

1    mult

Boneh,Goh & Nissim

Gentry’s “bootstrapping theorem” …

WE ARE HERE!

… If you can go a (large) part of the way,

then you can go all the way.

[bootstrapping]



Josh’s 

system

MANY add

ZERO mult

Fully homomorphic

MANY add

MANY mult

MANY add
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Boneh,Goh & Nissim

Gentry’s “bootstrapping theorem” …

WE ARE HERE!

… If you can go a (large) part of the way,

then you can go all the way.

[bootstrapping]

[HOW? WE’LL SEE IN A BIT]
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… it takes 99 min to encrypt this sentence



How efficient is all this?

… can I buy a homomorphic encryption 

software and start encrypting my data?

… well, not quite yet

… encrypting a bit takes ~19s (!) with the 

current best implementation 

… but we are improving rapidly…
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Gentry’s “bootstrapping method” …

… If you can go a (large) part of the way,

then you can go all the way…

noise=0

noise=p/2

Problem: Add and Mult increase noise

(Add doubles, Mult squares the noise)

So, we want to do noise-reduction
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Let’s think…

Secret key

Decrypt

b

But I 
can’t give 

the 
secret 

key out 
for free!

Ctxt = Enc(b)

… I want to reduce noise without letting you decrypt 
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Enc(Secret key)

Decrypt
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Ctxt = Enc(b)

KEY OBSERVATION:

Enc(b)
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noise=0

noise=p/2

KEY IDEA:

… I cannot release the secret key (lest everyone sees my data)

… but I can release Enc(secret key)

Enc(Secret key)

Decrypt

Regardless of the noise in the input Enc(b)…

Ctxt = Enc(b)

KEY OBSERVATION:

Enc(b)

the noise level in the output Enc(b) is FIXED



Bottomline: whenever noise level increases 

beyond a limit …

noise=0

noise=p/2

… use bootstrapping to reset it to a fixed level
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noise=0

noise=p/2

Bootstrapping requires homomorphically

evaluating the decryption circuit …

Thus, Gentry’s “bootstrapping theorem”:

If an enc scheme can evaluate its own 

decryption circuit, then it can evaluate 

everything


