
ENEE 457: Computer Systems Security
11/28/16

Lecture 23
Secure Storage

Charalampos (Babis) Papamanthou

Department of Electrical and Computer Engineering
University of Maryland, College Park

Cloud computing today

Enterprises Universities

Individuals Developers

Are there any threats?
§ Cloud providers are untrusted

§ Can lose data
§ Can return corrupted results
§ Can leak information

…we will have no liability to you for
any unauthorized access or use,

corruption, deletion, destruction or loss
of any of your content or applications…

Amazon web service customer agreement
http://aws.amazon.com/agreement/

Do people care?

…58% of the public and 86% of business leaders are excited about
the possibilities of cloud computing. But more than 90% of them
are worried about security, availability, and privacy of their data

as it rests in the cloud…

Microsoft survey in 2010
http://news.cnet.com/8301-1009_3-10437844-83.html

§ Customers are paying for the services
§ They want reliable storage
§ They want correctness guarantees
§ They want to keep their privacy

What do I do?
§ Enable people to use the cloud safely
§ Verifiability in the cloud

§ Verify that the cloud did the work correctly
§ Privacy in the cloud

§ Use the cloud in a privacy-preserving manner

provably secure

efficient both in theory and in practice

no assumptions at the server

Secure Cloud Storage

Security Framework

§ We must make sure our files have not changed since they were
uploaded

§ We are going to ask the server that stores our files to compute a
“proof” that he stores our files intact

§ Central to the rest of the talk:
§ Cryptographic hash function, e.g., SHA256
§ Let’s try it out

7

Storing your files in the cloud: Hash-based

§ How to verify that a file has not been corrupted?
§ Keep a hash (i.e., checksum) locally for each file
§ Download: recompute and check
§ Upload: compute and store new hash

O(n) client space L

download

upload

Constant space? MAC-based

§ How to verify that a file has not been corrupted?
§ Compute a MAC for each file using a secret key

§ Store only the secret key!
§ Download: recompute and check
§ Upload: ?

O(1) client space J

download

uploadsecret key k

What about replay attacks? Tree-based
download

upload

§ Hashing over a tree and store only the roothash
§ Download: Fetch O(log n) hashes
§ Upload: An interactive protocol

O(1) client space J

Hash Tree: Details
§ Balanced binary tree

defining a hierarchical
hashing scheme over
a set of items
§ a = h(x1, x2)
§ b = h(x3, x4)
§ c = h(a, b)
§ …

§ The root hash is a
hierarchical digest of
entire set

§ [Merkle]
11

x2x1 x4x3 x5 x7x6

a b

c

x8

Hash Tree Verification
§ Assumptions

§ Collision resistant hash function
§ Root hash is known

§ Membership proof of an item
§ path from the item to the root

(L/R sequence) plus hash
values of sibling nodes

§ logarithmic size
§ logarithmic verification

time
§ Example

§ g = h(h(a, h(x3, x4)), d)

12

x2x1 x4x3 x5 x7x6

a b e f

c d

g

x8

Proof intuition
§ In order to provide a verifying

proof for a different leaf
element, the adversary will
have to break collision
resistance in at least one level
of the tree

§ This happens with negligible
probability

13

x2x1 x4x3 x5 x7x6

a b e f

c d

g

x8

Recap:
Solutions to cloud based storage
Approach Client

Space
Proof Size Verification Proof Computation Updates?

Hash all O(n) O(1) O(1) O(1) O(1)
MAC O(1) O(1) O(1) O(1) NO
Merkle
tree

O(1) O(log n) O(log n) O(log n) O(log n)

§ Can you make everything constant?
§ Impossible under certain assumptions

Other considerations on storage

How can you verify all the files more
efficiently?

How do I make sure that
server is storing all my
data?

How do I make sure that
server is storing all my
data?

Idea 1: Download & check all
blocks

How do I make sure that
server is storing all my
data?

Idea 1: Download & check all
blocks

… but is expensive

How do I make sure that
server is storing all my
data?

§ Idea 2: Probabilistically
download and check a small
subset of blocks

If server erases t out of n
blocks, what is the probability
of passing an audit?
Suppose	k random	blocks	are	checked	during	an	audit	

If server erases t out of n
blocks, what is the probability
of passing an audit?

Pr[pass audit] = (1-t/n)k

Suppose	k random	blocks	are	checked	during	an	audit	

If server erases t out of n
blocks, what is the probability
of passing an audit?
Suppose	k random	blocks	are	checked	during	an	audit	

• If	t	=	n/2:		
Pr[pass	audit]	=	2-k,		i.e.,	negligible	in	k

Pr[pass audit] = (1-t/n)k

If server erases t out of n
blocks, what is the probability
of passing an audit?
Suppose	k random	blocks	are	checked	during	an	audit
Suppose	t	blocks	have	been	tampered	by	the	server

• If	t	=	n/2:		
Pr[pass	audit]	=	2-k,		i.e.,	negligible	in	k

• If	t	=	1:
Even	if	the	client	checks	n/2	blocks,		
Pr[pass	audit]	=	(1-1/n)n/2
For	n=1000,	Pr[pass	audit]	=	0.6

Pr[pass audit] = (1-t/n)k

How do I make sure that
server is storing all my
data?

Idea 2: Probabilistically download and check
a small subset of blocks

Proof of data possession: fail to detect
small number of erasures with significant
probability.

Proofs of Retrievability

Even when a single block
is lost, the client can
detect with overwhelming
probability.

Boosting the Probability of
Detection?

Boosting the Probability of
Detection?

Use	erasure	coding,	s.t. the	
server	needs	to	delete	at	
least	n/2 blocks	to	cause	
actual	data	loss

Erasure Coding

Block0

Block1

Block2

Blockn

…
…

Block0

Block1

Block2

Block2n

…
…

Encode	n blocks	into	2n
blocks,	such	that	knowledge	
of	any	n allows	full	recovery	

Proofs of Retrievability

…

…
…

M
erkle
tree

Client
Server

Proofs of Retrievability

…
…

M
erkle
tree

Client
Server

Audit: Randomly check k blocks

Proofs of Retrievability

…
…

Client Server

If	data	loss	has	occurred,	then	server	must	
have	erased	more	than	n out	of	2n blocks

Audit	will	detect	this	with	probability	1-2-k

How to support updates efficiently?

……

Hierarchical log

Update buffer

……

Hierarchical log

o

Update buffer

……

Hierarchical log

Update buffer

……

Hierarchical log

Update buffer

……

Hierarchical log

Update buffer

……

Hierarchical log

Update buffer

……

Hierarchical log

Update buffer

……

Hierarchical log

Update buffer

……

Hierarchical log

Update buffer

……

Hierarchical log

Update buffer

……

Hierarchical log

Update buffer

