

Can we reduce the proof size?

- So far all the methods we have seen have proof size at least logarithmic
- Can we reduce the proof size?
- Yes!
- By changing the cryptographic primitive
- Are we loosing anything?

RSA Accumulator

Exponential accumulation of elements:

$$A = a^{x_1 x_2 \dots x_n} \mod N$$

- N = pq is an RSA modulus
- a and N are relatively prime
- Only the client knows p and q, and thus $\phi(N) = (p-1)(q-1)$
- Each x_i is prime
- The basis is the accumulation A
- Proof of membership of x_i (witness):

$$A_i = a^{x_1 \cdots x_{i-1} x_{i+1} \cdots x_n} \bmod N$$

- Verification:
 - Test $A = A_i^{x_i} \mod N$
- [Benaloh de Mare]

Accumulator as a Hash Function

Quasi-commutative hash function

$$h(h(a, x_1), x_2) = h(h(a, x_2), x_1)$$

 Exponential accumulation yields quasi-commutative hash function

$$h(a, x) = a^x \mod N$$

Witness verification as hash computation

$$A = A_i^{x_i} \bmod N = h(A_i, x_i)$$

- Collision resistance
 - Given a, x, y difficult to find a' such that

$$h(a, x) = h(a', y)$$

Security

- Why should elements be prime?
 - Witness can be computed for factors of elements
- Why should the factorization of N be kept secret?

Security based on strong RSA assumption:

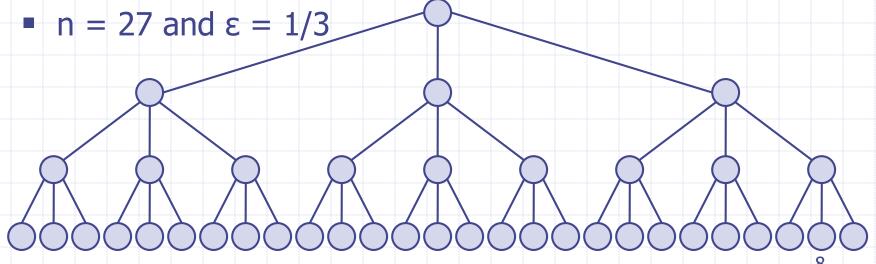
- Given a modulus N of unknown factorization and a base g, it is infeasible to find some e-th root of g mod N.
- How do we prove security based on the above assumption?

Efficiency

- Size of proof: O(1)
- Time to compute the proof: O(n)
- Time to verify: O(1)
- Time to update: O(1)
- OR (precomputed witnesses)
- Size of proof: O(1)
- Time to compute the proof: O(1)
- Time to verify: O(1)
- Time to update: O(n)

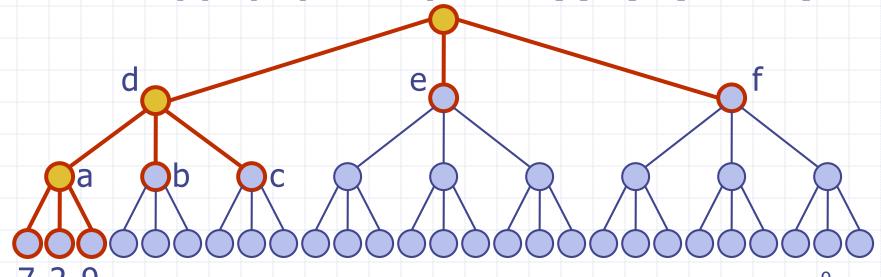
Can we make the costs sublinear?

- Set $X = \{x_1, x_2, ..., x_n\}$ of elements to authenticate
- Constant 0<ε<1</p>
- We build a tree T(ε) on top of the elements:
 - The leaves store $x_1, x_2, ..., x_n$
 - The tree has O(1/ε) levels
 - Every node has O(n^ε) children
 - Level i contains $O(n^{1-i\epsilon})$ nodes

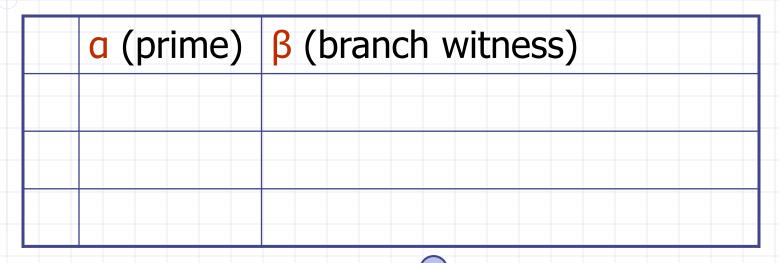


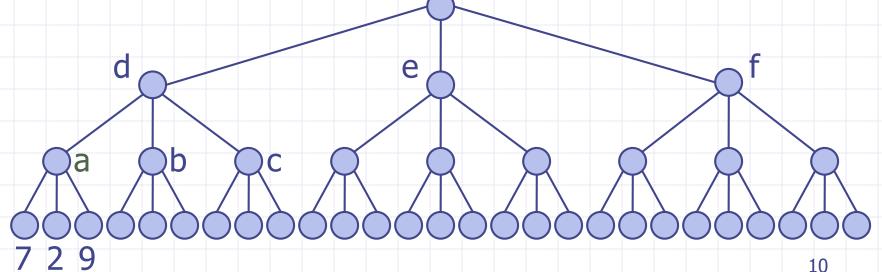
Accumulation tree: digests

- For each level i of the tree
 - N_i: RSA modulus; g_i ∈ QR_{Ni}
 - r_i(x): prime representative of x at level i
 - RSA digest of a node v with children $v_1, v_2, ..., v_t$ $d(v) = \exp(g_i, r_i(v_1)r_i(v_2) ... r_i(v_t)) \mod N_i$
- The digest of set X is the RSA digest of the root
- $a = \exp(g_1, r_1(7)r_1(2)r_1(9)) \mod N_1, d = \exp(g_2, r_2(a)r_2(b)r_2(c)) \mod N_2$



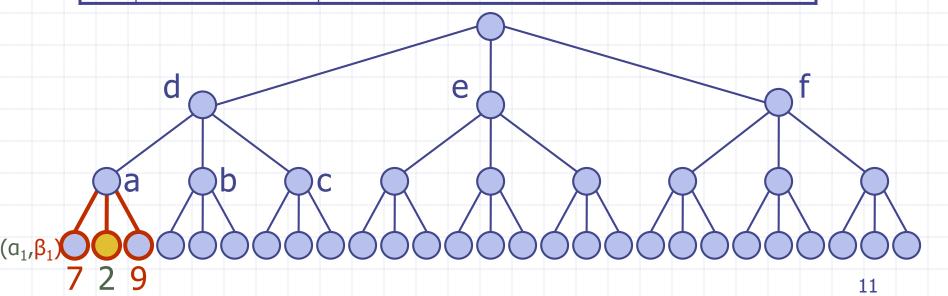
Example: query for element 2





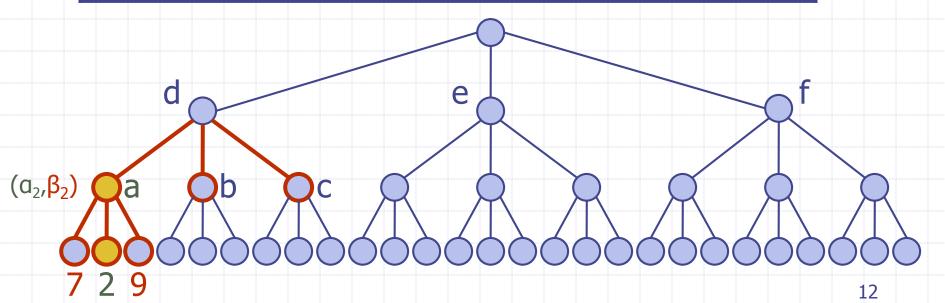
Query: level 1

	a (prime)	β (branch witness)
1	$a_1 = r_1(2)$	$\beta_1 = \exp(g_1, r_1(7)r_1(9)) \mod N_1$



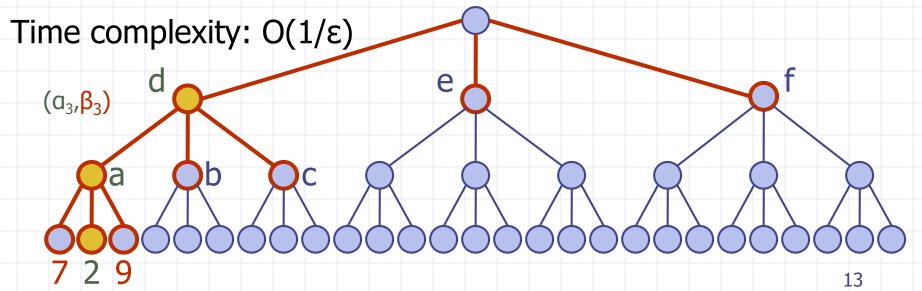
Query: level 2

	a (prime)	β (branch witness)
1	$a_1 = r_1(2)$	$\beta_1 = \exp(g_1, r_1(7)r_1(9)) \mod N_1$
2	$a_2=r_2(a)$	β_2 = exp(g ₂ ,r ₂ (b)r ₂ (c)) mod N ₂



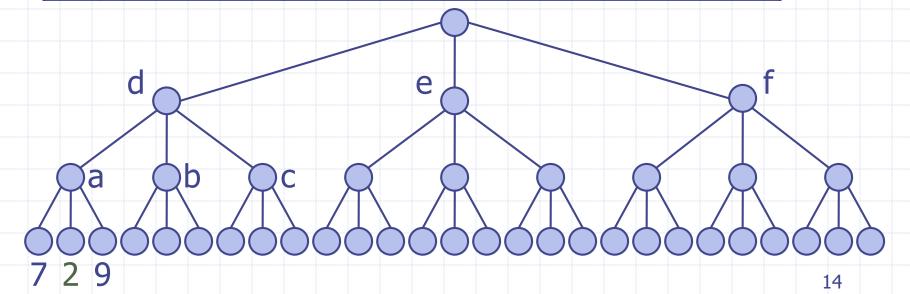
Query: level 3

	a (prime)	β (branch witness)
1	$a_1 = r_1(2)$	$\beta_1 = \exp(g_1, r_1(7)r_1(9)) \mod N_1$
2	$a_2 = r_2(a)$	β_2 = exp(g ₂ ,r ₂ (b)r ₂ (c)) mod N ₂
3	$a_3 = r_3(d)$	β_3 = exp(g ₃ ,r ₃ (e)r ₃ (f)) mod N ₃

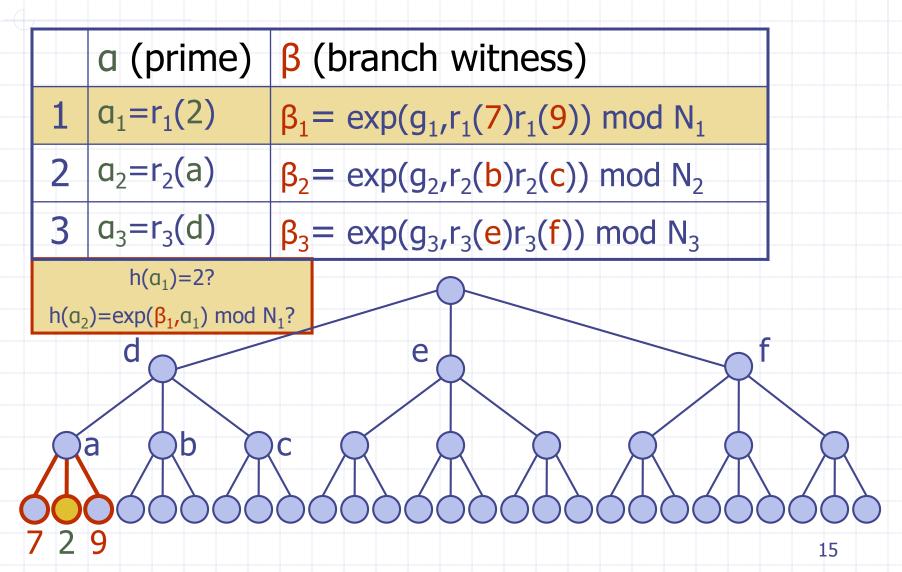


Example: verification of element 2

	a (prime)	β (branch witness)
1	$a_1 = r_1(2)$	$\beta_1 = \exp(g_1, r_1(7)r_1(9)) \mod N_1$
2	$a_2 = r_2(a)$	β_2 = exp(g ₂ ,r ₂ (b)r ₂ (c)) mod N ₂
3	$a_3 = r_3(d)$	β_3 = exp(g ₃ ,r ₃ (e)r ₃ (f)) mod N ₃

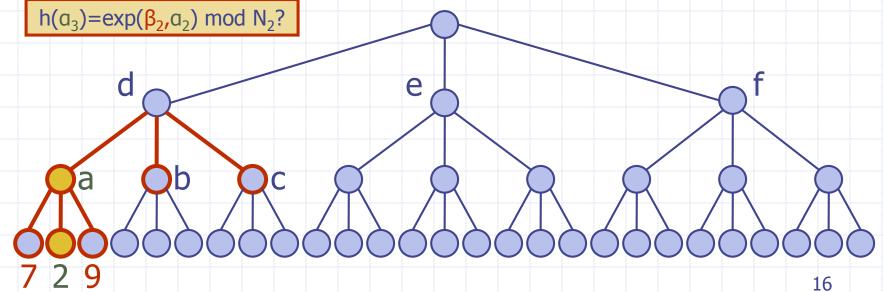


Verification: level 1



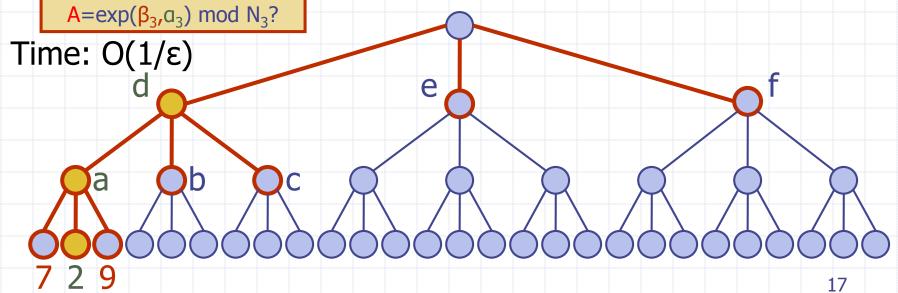
Verification: level 2

	a (prime)	β (branch witness)
1	$a_1 = r_1(2)$	$\beta_1 = \exp(g_1, r_1(7)r_1(9)) \mod N_1$
2	$a_2=r_2(a)$	β_2 = exp(g ₂ ,r ₂ (b)r ₂ (c)) mod N ₂
3	$a_3=r_3(d)$	$\beta_3 = \exp(g_3, r_3(e)r_3(f)) \mod N_3$



Verification: level 3

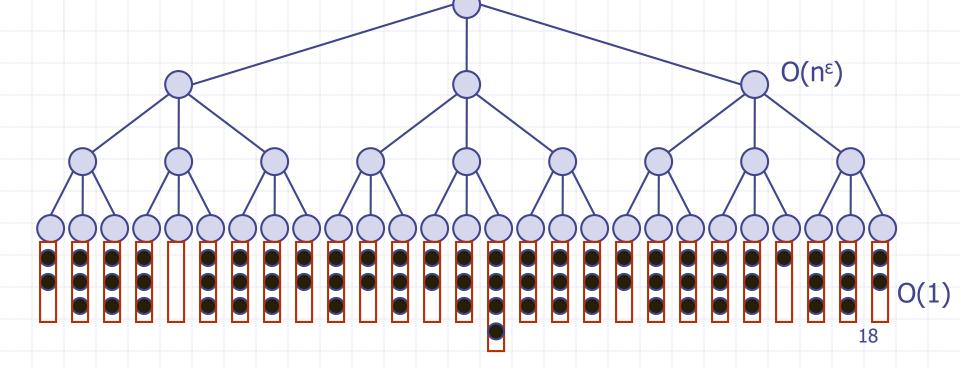
	a (prime)	β (branch witness)
1	$a_1 = r_1(2)$	$\beta_1 = \exp(g_1, r_1(7)r_1(9)) \mod N_1$
2	$a_2=r_2(a)$	β_2 = exp(g ₂ ,r ₂ (b)r ₂ (c)) mod N ₂
3	$a_3=r_3(d)$	β_3 = exp(g ₃ ,r ₃ (e)r ₃ (f)) mod N ₃



Dynamic dictionaries

- Hash function
- O(n) buckets
- Expected O(1) elements per bucket

- Pick 0<ε<1
- Tree T(ε) on top of the buckets
- One digest per bucket



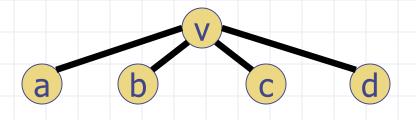
Queries and updates

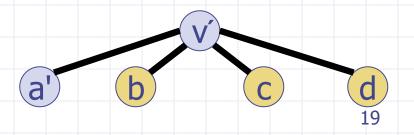
 With pre-computed witnesses we can support queries in expected O(1) time

 How	do	you	upo	date
witne	esse	es?		

а	exp(g _i ,bcd) mod N _i
b	exp(g _i ,acd) mod N _i
С	exp(g _i ,abd) mod N _i
d	exp(g _i ,abc) mod N _i

a'	exp(g _i ,bcd) mod N _i
b	exp(g _i ,a'cd) mod N _i
С	exp(g _i ,a'bd) mod N _i
d	exp(g _i ,a'bc) mod N _i





Updating witnesses

- Suppose a node has m children
- We want to update all m witnesses during an update

Algorithm	Complexity
brute force	O(m ²)
divide and conquer, [Sander+ (00)]	O(m log m)

- Since a node has n^ε children, the update time is O(n^ε log n), which can be reduced to O(n^ε)
- Result is expected amortized
 - Bound on size of buckets is expected
 - The hash table has to be rebuilt periodically

Witness on the fly

 With no pre-computed witnesses we can support updates in O(1) time

 $v = \exp(g_i, abcd) \mod N_i$

- Receive the new digests from the source
- Compute the witness explicitly in O(n^ε) time

v' exp(g_i , a'bcd) mod N_i

