
1

RSA accumulators

Can we reduce the proof size?

 So far all the methods we have seen
have proof size at least logarithmic

 Can we reduce the proof size?

 Yes!

 By changing the cryptographic primitive

 Are we loosing anything?

2

3

RSA Accumulator
 Exponential accumulation of elements:

A = ax1x2 … xn mod N
 N = pq is an RSA modulus

 a and N are relatively prime

 Only the client knows p and q, and thus f(N) = (p-1)(q-1)

 Each xi is prime

 The basis is the accumulation A

 Proof of membership of xi (witness):

Ai = ax1 … xi-1 xi+1 … xn mod N

 Verification:

 Test A = Ai
xi mod N

 [Benaloh de Mare]

Accumulator as a Hash Function

 Quasi-commutative hash function

h(h(a, x1), x2) = h(h(a, x2), x1)

 Exponential accumulation yields quasi-commutative
hash function

h(a, x) = ax mod N

 Witness verification as hash computation

A = Ai
xi mod N = h(Ai, xi)

 Collision resistance

 Given a, x, y difficult to find a such that

h(a, x) = h(a, y)

4

Security

 Why should elements be prime?

 Witness can be computed for factors of
elements

 Why should the factorization of N be
kept secret?

5

Security based on strong RSA
assumption:

 Given a modulus N of unknown
factorization and a base g, it is
infeasible to find some e-th root of g
mod N.

 How do we prove security based on the
above assumption?

6

Efficiency

 Size of proof: O(1)

 Time to compute the proof: O(n)

 Time to verify: O(1)

 Time to update: O(1)

OR (precomputed witnesses)

 Size of proof: O(1)

 Time to compute the proof: O(1)

 Time to verify: O(1)

 Time to update: O(n)

7

Can we make the costs
sublinear?
 Set X = {x1,x2,…,xn} of elements to authenticate

 Constant 0<ε<1

 We build a tree T(ε) on top of the elements:
 The leaves store x1,x2,…,xn

 The tree has O(1/ε) levels

 Every node has O(nε) children

 Level i contains O(n1 – iε) nodes

 n = 27 and ε = 1/3

8

Accumulation tree: digests
 For each level i of the tree

 Ni: RSA modulus; gi  QRNi

 ri(x): prime representative of x at level i

 RSA digest of a node v with children v1,v2,…,vt

d(v) = exp(gi,ri(v1)ri(v2) … ri(vt)) mod Ni

 The digest of set X is the RSA digest of the root
 a = exp(g1,r1(7)r1(2)r1(9)) mod N1, d = exp(g2,r2(a)r2(b)r2(c)) mod N2

7 2 9

a b c

d e f

9

Example: query for element 2

α (prime) β (branch witness)

a b c

d e f

7 2 9 10

Query: level 1

α (prime) β (branch witness)

1 α1=r1(2) β1= exp(g1,r1(7)r1(9)) mod N1

7 2 9

a b c

d e f

11

(α1,β1)

Query: level 2

α (prime) β (branch witness)

1 α1=r1(2) β1= exp(g1,r1(7)r1(9)) mod N1

2 α2=r2(a) β2= exp(g2,r2(b)r2(c)) mod N2

7 2 9

a b c

d e f

12

(α2,β2)

Query: level 3

α (prime) β (branch witness)

1 α1=r1(2) β1= exp(g1,r1(7)r1(9)) mod N1

2 α2=r2(a) β2= exp(g2,r2(b)r2(c)) mod N2

3 α3=r3(d) β3= exp(g3,r3(e)r3(f)) mod N3

7 2 9

a b c

d e f

Time complexity: O(1/ε)

13

(α3,β3)

Example: verification of element 2

7 2 9

a b c

d e f

α (prime) β (branch witness)

1 α1=r1(2) β1= exp(g1,r1(7)r1(9)) mod N1

2 α2=r2(a) β2= exp(g2,r2(b)r2(c)) mod N2

3 α3=r3(d) β3= exp(g3,r3(e)r3(f)) mod N3

14

Verification: level 1

h(α1)=2?

h(α2)=exp(β1,α1) mod N1?

7 2 9

a b c

d e f

α (prime) β (branch witness)

1 α1=r1(2) β1= exp(g1,r1(7)r1(9)) mod N1

2 α2=r2(a) β2= exp(g2,r2(b)r2(c)) mod N2

3 α3=r3(d) β3= exp(g3,r3(e)r3(f)) mod N3

15

Verification: level 2

h(α3)=exp(β2,α2) mod N2?

7 2 9

a b c

d e f

α (prime) β (branch witness)

1 α1=r1(2) β1= exp(g1,r1(7)r1(9)) mod N1

2 α2=r2(a) β2= exp(g2,r2(b)r2(c)) mod N2

3 α3=r3(d) β3= exp(g3,r3(e)r3(f)) mod N3

16

Verification: level 3

A=exp(β3,α3) mod N3?

7 2 9

a b c

d e f

α (prime) β (branch witness)

1 α1=r1(2) β1= exp(g1,r1(7)r1(9)) mod N1

2 α2=r2(a) β2= exp(g2,r2(b)r2(c)) mod N2

3 α3=r3(d) β3= exp(g3,r3(e)r3(f)) mod N3

17

Time: O(1/ε)

Dynamic dictionaries
 Hash function

 O(n) buckets

 Expected O(1) elements
per bucket

 Pick 0<ε<1

 Tree T(ε) on top of the
buckets

 One digest per bucket

O(nε)

O(1)

18

Queries and updates

 With pre-computed
witnesses we can support
queries in expected O(1)
time

a exp(gi,bcd) mod Ni

b exp(gi,acd) mod Ni

c exp(gi,abd) mod Ni

d exp(gi,abc) mod Ni

v

a b c d

v ́

a' b c d

a’ exp(gi,bcd) mod Ni

b exp(gi,a’cd) mod Ni

c exp(gi,a’bd) mod Ni

d exp(gi,a’bc) mod Ni

 How do you update
witnesses?

19

Updating witnesses

 Since a node has nε children, the update time is
O(nε log n), which can be reduced to O(nε)

 Result is expected amortized

 Bound on size of buckets is expected

 The hash table has to be rebuilt periodically

 Suppose a node has m children

 We want to update all m witnesses during an update

 f(N) is not known to the untrusted server

Algorithm Complexity

brute force O(m2)

divide and conquer, [Sander+ (00)] O(m log m)

20

Witness on the fly

 With no pre-computed
witnesses we can
support updates in O(1)
time

v exp(gi,abcd) mod Ni

v

a b c d

v ́

a' b c d

v’ exp(gi,a’bcd) mod Ni

 Receive the new digests
from the source

 Compute the witness
explicitly in O(nε) time

21

