RSA accumulators

Can we reduce the proof size?

= So far all the methods we have seen
have proof size at least logarithmic

= Can we reduce the proof size?

" Yes!

» By changing the cryptographic primitive
= Are we loosing anything?

RSA Accumulator

= Exponential accumulation of elements:

A = a*%2 - *» mod N
= N =pgis an RSA modulus
= aand N are relatively prime
= Only the client knows p and g, and thus ¢(N) = (p—1)(q-1)
= Each x; is prime

The basis is the accumulation A

Proof of membership of x; (witness):

Ai = aXl eoe Xj—1 Xjr1 --- X mod N
Verification:
« Test A=AXmodN
[Benaloh de Mare]

Accumulator as a Hash Function

= Quasi-commutative hash function
h(h(a, X;), X,) = h(h(a, X,), X;)

= Exponential accumulation yields quasi-commutative
hash function

h(a, X) =a*mod N
= Witness verification as hash computation
A = AXimod N = h(A;, X
= Collision resistance

- Given a, X, y difficult to find a’ such that
h(a, X) =h(a’,y)

Security

= \Why should elements be prime?

- Witness can be computed for factors of
elements

= Why should the factorization of N be
kept secret?

Security based on strong RSA
assumption:

= Given a modulus N of unknown
factorization and a base g, it is
infeasible to find some e-th root of g
mod N.

= How do we prove security based on the
above assumption?

Efficiency

= Size of proof: O(1)

" Time to compute the proof: O(n)
" Time to verify: O(1)

" Time to update: O(1)

OR (precomputed witnesses)

= Size of proof: O(1)

" Time to compute the proof: O(1)
" Time to verify: O(1)

" Time to update: O(n)

Can we make the costs
sublinear?

= Set X = {X{,X5,...,X,} Of elements to authenticate
= Constant O<e<1
= We build a tree T(€) on top of the elements:

- The leaves store X;,X,, ..., X,

- The tree has O(1/¢) levels

- Every node has O(n¢) children
- Level i contains O(n!-€) nodes

= n=27ande=1/3

SLodlosbodlodloslodbodbodle

Accumulation tree: digests

= For each level i of the tree

- N;: RSA modulus; g; € QR

- r(x): prime representative of x at level i

- RSA digest of a node v with children v,,v,,...,v;

d(v) = exp(g;ri(vyr(vy) ... r(vy)) mod N
= The digest of set X is the RSA digest of the root
= a=exp(gy,r(7)ry(2)ry(9)) mod Ny, d = exp(gy,ry(a)ry(b)ry(c)) mod N,
@

d = f

LI F NV GV

/729

Example: query for element 2

a (prime)

B8 (branch witness)

@@%@@é@%

f

O/\O)})

10

Query: level 1

a (prime)

B (branch witness)

a,=r,(2)

Bl= exp(gllr1(7)r1(9)) mod Nl

(la

- Bdbodbodbudds

/729

d

€

f

i

11

Query: level 2

a (prime) |3 (branch witness)
1 |0;=r(2) 3,= exp(gy,ri(7)ri(9)) mod N,
2 |ay=ry(a) | B,= exp(g,,r(b)ry,(c)) mod N,

d = f

@B)a Qb ¥Qc g)g O O/Q}) C)
000000000 O OOO0OOO0000

/29 12

Query: level 3

a (prime) | B (branch witness)
1 |0,=ri(2) [B,= exp(g,,r{(7)r,(9)) mod N,
2 |0=r(a) | B,= exp(g,,ry(b)ry(c)) mod N,
3 |a3=r3(d) | B;= exp(gs,rs(e)rs(f)) mod Nj
Time complexity: O(1/¢) ®
(@.8) d ~ e f

(a

Ob Qc

/729

13

Example: verification of element 2

a (prime) | B (branch witness)

1 |0,=ri(2) [B,= exp(g,,r{(7)r,(9)) mod N,
2 |0=r(a) | B,= exp(g,,ry(b)ry(c)) mod N,
3 |a3=r3(d) | B;= exp(gs,rs(e)rs(f)) mod Nj

d = f

§Lodbosbodbndlosledbodbods

/729 14

Verification: level 1

a (prime) |3 (branch witness)
1 |a0;=ri(2) [B,= exp(g,,r{(7)r,(9)) mod N,
2 |a,=ry(a) = exp(g,,r(b)r,(c)) mod N,
3 |as=r5(d) = exp(gs,r3(e)rs(f)) mod N,

h(a,)=2?

h(a,)=exp(B;,a;) mod N,? |

d

INPITINE

/729

= f

&odbodbodds

15

Verification: level 2

(Ja Qb Qc
00000 000®

/729

a (prime) | B (branch witness)
1 a0;=ri(2) [B,= exp(g,,r{(7)r,(9)) mod N,
2 |a,=r(a) | B,= exp(g,,r(b)ry(c)) mod N,
3 |a3=r3(d) | Bs= exp(gs,rs(e)rs(f)) mod Nj
h(a;)=exp(B,,a,) mod N,?
d ~ e f

&bosbodbodds

16

Verification: level 3

a (prime) |3 (branch witness)
1 a0;=ri(2) [B,= exp(gy,r{(7)r,(9)) mod N,
2 |a,=r(a) | B,= exp(g,,r,(b)ry,(c)) mod N,
3 |a3=r3(d) | B3= exp(gs,rs(e)rs(f)) mod N
A=exp(B5,a;) mod N5? |)
Time: O(1/¢)
d ~ e f

Godbodbodbodbosbodbodds

/729

17

Dynamic dictionaries

= Hash function = Pick O<e<1
= O(n) buckets "= Tree T(g) on top of the
= Expected O(1) elements buckets
per bucket = One digest per bucket
O(né)
C) C) C) C)
CIOC CIOIC CIOIC CIOIC
P Y e i P B P il P B P il P B P il
INN NNI INN 0(1)
18

Queries and updates

= With pre-computed = How do you update
withesses we can support withesses?
queries in expected O(1)
time

exp(g;,bcd) mod exp(g;,bcd) mod N.

exp(g;,acd) mod exp(g;,a’cd) mod N,

exp(g;,abd) mod exp(g;,a’bd) mod N,

O 0O T |

Z|lzl=z|=
Q| 0O (T |

exp(g;,abc) moa exp(g;,a’bc) mod N,

& vuw & ®e

19

Updating witnhesses

= Suppose a node has m children

= We want to update all m witnesses during an update
= ¢(N) is not known to the untrusted server

Algorithm Complexity
brute force O(m?2)
divide and conquer, [Sander+ (00)] O(m log m)

= Since a node has né children, the update time is
O(n¢log n), which can be reduced to O(n¢)

= Result is expected amortized

= Bound on size of buckets is expected
= The hash table has to be rebuilt periodically

20

Witness on the fly

= With no pre-computed = Receive the new digests

withesses we can from the source
support updates in O(1) = Compute the witness
time explicitly in O(ng) time

v |exp(g;abcd) mod N, v' |exp(g;a’bcd) mod N

& v & B e

21

