
Secure Storage

ENEE 459-C

Cloud computing today

Enterprises Universities

Individuals Developers

Are there any threats?

 Cloud providers are untrusted

 Can lose data

 Can return corrupted results

 Can leak information

…we will have no liability to you for

any unauthorized access or use,

corruption, deletion, destruction or loss

of any of your content or applications…

Amazon web service customer agreement

http://aws.amazon.com/agreement/

Do people care?

…58% of the public and 86% of business leaders are excited about

the possibilities of cloud computing. But more than 90% of them

are worried about security, availability, and privacy of their data

as it rests in the cloud…

Microsoft survey in 2010

http://news.cnet.com/8301-1009_3-10437844-83.html

 Customers are paying for the services

 They want reliable storage

 They want correctness guarantees

 They want to keep their privacy

Secure Cloud Storage

Security Framework

 We must make sure our files have not changed since they were

uploaded

 We are going to ask the server that stores our files to compute a

“proof” that he stores our files intact

 Central to the rest of the talk:

 Cryptographic hash function, e.g., SHA256

6

Storing your files in the cloud: Hash-based

 How to verify that a file has not been corrupted?

 Keep a hash (i.e., checksum) locally for each file

 Download: recompute and check

 Upload: compute and store new hash

O(n) client space 

download

upload

Constant space? MAC-based

 How to verify that a file has not been corrupted?

 Compute a MAC for each file using a secret key

 Store only the secret key!

 Download: recompute and check

 Upload: ?

O(1) client space 

download

uploadsecret key k

What about replay attacks? Tree-based

download

upload

 Hashing over a tree and store only the roothash

 Download: Fetch O(log n) hashes

 Upload: An interactive protocol

O(1) client space 

Hash Tree: Details

 Balanced binary tree
defining a hierarchical
hashing scheme over
a set of items

 a = h(x1, x2)

 b = h(x3, x4)

 c = h(a, b)

 …

 The root hash is a
hierarchical digest of
entire set

 [Merkle]
10

x2x1 x4x3 x5 x7x6

a b

c

x8

Hash Tree Verification

 Assumptions

 Collision resistant hash function

 Root hash is known

 Membership proof of an item

 path from the item to the root

(L/R sequence) plus hash

values of sibling nodes

 logarithmic size

 logarithmic verification

time

 Example

 g = h(h(a, h(x3, x4)), d)

11

x2x1 x4x3 x5 x7x6

a b e f

c d

g

x8

Proof intuition

 In order to provide a verifying

proof for a different leaf

element, the adversary will

have to break collision

resistance in at least one level

of the tree

 This happens with negligible

probability

12

x2x1 x4x3 x5 x7x6

a b e f

c d

g

x8

Recap:
Solutions to cloud based storage
Approach Client

Space
Proof Size Verification Proof Computation Updates?

Hash all O(n) O(1) O(1) O(1) O(1)

MAC O(1) O(1) O(1) O(1) NO

Merkle
tree

O(1) O(log n) O(log n) O(log n) O(log n)

 Can you make everything constant?

 Impossible under certain assumptions

Other considerations on storage

How can you verify all the files

more efficiently?

How do I make sure that
server is storing all my
data?

How do I make sure that
server is storing all my
data?

Idea 1: Download & check all
blocks

How do I make sure that
server is storing all my
data?

Idea 1: Download & check all
blocks

… but is expensive

How do I make sure that
server is storing all my
data?

 Idea 2: Probabilistically
download and check a small
subset of blocks

If server erases t out of n
blocks, what is the probability
of passing an audit?
Suppose k random blocks are checked during an audit

If server erases t out of n
blocks, what is the probability
of passing an audit?

Pr[pass audit] = (1-t/n)k

Suppose k random blocks are checked during an audit

If server erases t out of n
blocks, what is the probability
of passing an audit?
Suppose k random blocks are checked during an audit

• If t = n/2:
Pr[pass audit] = 2-k, i.e., negligible in k

Pr[pass audit] = (1-t/n)k

If server erases t out of n
blocks, what is the probability
of passing an audit?
Suppose k random blocks are checked during an audit
Suppose t blocks have been tampered by the server

• If t = n/2:
Pr[pass audit] = 2-k, i.e., negligible in k

• If t = 1:
Even if the client checks n/2 blocks,
Pr[pass audit] = (1-1/n)n/2

For n=1000, Pr[pass audit] = 0.6

Pr[pass audit] = (1-t/n)k

How do I make sure that
server is storing all my
data?

Idea 2: Probabilistically download and check
a small subset of blocks

Proof of data possession: fail to detect
small number of erasures with significant
probability.

Proofs of Retrievability

Even when a single block
is lost, the client can
detect with overwhelming
probability.

Boosting the Probability of
Detection?

Boosting the Probability of
Detection?

Use erasure coding, s.t. the
server needs to delete at
least n/2 blocks to cause
actual data loss

Erasure Coding

Block0

Block1

Block2

Blockn

…
…

Block0

Block1

Block2

Block2n

…
…

Encode n blocks into 2n
blocks, such that knowledge
of any n allows full recovery

Proofs of Retrievability

…

…
…

M
e
rk

le
tre

e

Client
Server

Proofs of Retrievability

…
…

M
e
rk

le
tre

e

Client
Server

Audit: Randomly check k blocks

Proofs of Retrievability

…
…

Client Server

If data loss has occurred, then server must
have erased more than n out of 2n blocks

Audit will detect this with probability 1-2-k

How to support updates efficiently?

……

Hierarchical log

Update buffer

……

Hierarchical log

o

Update buffer

……

Hierarchical log

Update buffer

……

Hierarchical log

Update buffer

……

Hierarchical log

Update buffer

……

Hierarchical log

Update buffer

……

Hierarchical log

Update buffer

……

Hierarchical log

Update buffer

……

Hierarchical log

Update buffer

……

Hierarchical log

Update buffer

……

Hierarchical log

Update buffer

