
ENEE 459-C

Computer Security

Web Security

Web, everywhere

 Many tasks are done through web
 Online banking, online shopping

 Database access

 System administration

 Web applications and web users are targets of
many attacks
 Information leakage

 Cross site scripting

 SQL injection

Web Browser and Network

Browser

Network

 Browser sends requests

 Web site sends response pages, which may include code

 Interaction susceptible to network attacks

OS

Hardware

Web
site

request

reply

Web Security Issues

 Secure communications between client &
server

 HTTPS (HTTP over SSL)

 User authentication & session management

 cookies & other methods

 Web application security

 program analysis

 Web site authentication (e.g., anti-phishing)

 certificates

HTTP: HyperText Transfer Protocol

 Browser sends HTTP requests to the server

 Methods: GET, POST, HEAD, …

 GET: to retrieve a resource (html, image, script, css,…)

 POST: to submit a form (login, register, …)

 HEAD: to retrieve only metadata

 Server replies with a HTTP response

 Stateless request/response protocol

 Each request is independent of previous requests

 Statelessness has a significant impact on design and
implementation of applications

Use Cookies to Store State Info

 Cookies
 A cookie is a piece of information created by a

website to store information on your computer

Browser
Server

Enters form data

Response + cookies

Browser
Server

Request + cookies

Returns data

Http is stateless protocol; cookies add state

Cookies Fields

 An example cookie

 Name session-token

 Content "s7yZiOvFm4YymG….”

 Domain .amazon.com

 Path /

 Expires Monday, September 08, 2031
7:19:41 PM

Cookies

 Stored by the browser at the client

 Used by the web applications
 used for authenticating, tracking, and maintaining

specific information about users
 e.g., site preferences, contents of shopping carts

 data may be sensitive

 may be used to gather information about specific
users

Web Authentication via Cookies

 HTTP is stateless

 How does the server recognize a user who has
signed in?

 Servers can use cookies to store state on
client
 After client successfully authenticates, server computes

an authenticator and gives it to browser in a cookie

 Client cannot forge authenticator on his own (session id)

 With each request, browser presents the cookie

 Server verifies the authenticator

A Typical Session with Cookies
client server

POST /login.cgi

Set-Cookie:authenticator

GET /restricted.html
Cookie:authenticator

Restricted content

Verify that this
client is authorized

Check validity of
authenticator

Authenticators must be unforgeable and tamper-proof
(malicious clients shouldn’t be able to modify an existing authenticator)

How to design it?

Authentication cookies

 cookie(userID)=

 (userID||time, MAC(K,userID||time))

 time: time the cookie was created

 K:secret key known by server only

 The server needs to make sure that

 Current_time – time <= cookie_duration

 If logged out or changed password before
expiration date, then previous cookie gets
invalidated

Cross Site Scripting

Client Side Scripting

 Web pages (HTML) can embed dynamic contents
(code) that can execute on the browser

 JavaScript

 embedded in web pages and executed inside browser

 VBScript

 similar to JavaScript, only for Windows

 Java applets

 small pieces of Java bytecodes that execute in
browsers

HTML and Scripting
<html>
<script>

var num1, num2, sum
num1 = prompt("Enter first number")
num2 = prompt("Enter second number")
sum = parseInt(num1) + parseInt(num2)
alert("Sum = " + sum)

</script>
</html>

Browser receives content, displays
HTML and executes scripts

Scripts are Powerful

 Client-side scripting is powerful and flexible,
and can access the following resources

 Local files on the client-side host

 read / write local files

 Webpage resources maintained by the browser

 Cookies

Browser as an Operating System

 Web users visit multiple websites simultaneously

 A browser serves web pages (which may contain
programs) from different web domains

 i.e., a browser runs programs provided by mutually untrusted
entities

 Running code one does not know/trust is dangerous

 A browser also maintains resources created/updated by web
domains

 Browser must confine (sandbox) these scripts so that
they cannot access arbitrary local resources

 Browser must have a security policy to manage/protect
browser-maintained resources and to provide
separation among mutually untrusted scripts

Same Origin Policy

 The basic security model enforced in the browser

 SoP isolates the scripts and resources downloaded
from different origins

 E.g., evil.org scripts cannot access bank.com resources

 Use origin as the security principal

 Origin = domain name + protocol + port

 all three must be equal for origin to be considered the
same

Problems with S-O Policy
 Poorly enforced on some browsers

 Particularly older browsers

 Limitations if site hosts unrelated pages
 Example: Web server often hosts sites for unrelated parties

 http://www.example.com/account/

 http://www.example.com/otheraccount/

 Same-origin policy allows script on one page to access
properties of document from another

 Can be bypassed in Cross-Site-Scripting attacks

 Usability: Sometimes prevents desirable cross-origin
resource sharing

Cross Site Scripting (XSS)

 Recall the basics

 scripts embedded in web pages run in browsers

 scripts can access cookies

 get private information

 scripts controlled by the same-origin policy

 Why would XSS occur

 Web applications often take user inputs and use them
as part of webpage (these inputs can have scripts)

XSS-Attack: General Overview

Post Forum Message:

Subject: GET Money for FREE !!!

Body:

<script> attack code </script>

1. Attacker sends malicious code

2. Server stores message

Did you know this?

.....

3. User requests message

4. Message is delivered by server

5. Browser executes script in message

GET Money for FREE !!!

<script> attack code </script>

Get /forum.jsp?fid=122&mid=2241

Attacker

Client

Web Server

GET Money for FREE !!!

<script> attack code </script>

!!! attack code !!!

This is only one example

out of many attack

scenarios!

Re: Error message on startup

.....
I found a solution!

.....
Can anybody help?

.....
Error message on startup

.....

How XSS Works on Online Blog

 Everyone can post comments, which will be displayed
to everyone who view the post

 Attacker posts a malicious comment that includes
scripts (which reads local authentication credentials
and sends to the attacker)

 Anyone who view the post can have local
authentication cookies stolen

 Web apps will check that posts do not include scripts,
but the check sometimes fail.

 Bug in the web application. Attack happens in browser.

XSS Example
 Website allows posting of comments in a

guestbook

 Server incorporates comments into page
returned

<html>

<body>

<title>My Guestbook!</title>

Thanks for signing my guestbook!

Here's what everyone else had to say:

Joe: Hi!

John: Hello, how are you?

Jane: How does this guestbook work?

</body>

 Attacker can post comment that includes
malicious JavaScript

Evilguy: <script>alert("XSS Injection!");
</script>

guestbook.html

<html>
<title>Sign My Guestbook!</title>
<body>
Sign my guestbook!
<form action="sign.php" method="POST">
<input type="text" name="name">
<input type="text" name="message"

size="40">
<input type="submit" value="Submit">
</form>
</body>
</html>

Protection against XSS attacks

 Sanitize the input

 Make sure it does not contain any scripts!

SQL Injection Attack

 Many web applications take user input from a form

 Often this user input is used literally in the construction

of a SQL query submitted to a database. For example:

SELECT user FROM table

WHERE name = ‘user_input’;

 An SQL injection attack involves placing SQL

statements in the user input

SQL: Standard Query Language

 SQL lets you access and manage (Query) databases

 A database is a large collection of data organized in
tables for rapid search and retrieval, with fields and
columns

First_Name Last_Name Age

John Myers 19

Maria Palm 22

Alex Klein 21

….. …. ….

A field or
Column

A Record
or Row Table: ENEE-459

SQL Syntax

 SELECT statement is used to select data
FROM one or more tables in a database

 Result-set is stored in a result table

 WHERE clause is used to filter records

SELECT First_Name

FROM ENEE-459

WHERE age=21

SQL Syntax

SELECT Last_Name

FROM ENEE-459

WHERE age=21

ORDER BY First_Name ASC

LIMIT 3

 ORDER BY is used to order data following
one or more fields (columns)

 LIMIT allows to retrieve just a certain
numbers of records (rows)

Login Authentication Query

• Standard query to authenticate users:
select * from users where user='$usern' AND pwd='$password'

 Classic SQL injection attacks
 Server side code sets variables $username and $passwd from user input

to web form

 Variables passed to SQL query

select * from users where user='$username' AND pwd='$passwd'

 Special strings can be entered by attacker
select * from users where user=M' OR '1=1 AND pwd=M' OR '1=1

• Result: access obtained without password

• Solution: Careful with single quote characters

• Filter them out!

