
ENEE 459-C

Computer Security

Web Security



Web, everywhere

 Many tasks are done through web
 Online banking, online shopping

 Database access

 System administration

 Web applications and web users are targets of 
many attacks
 Information leakage

 Cross site scripting

 SQL injection



Web Browser and Network

Browser

Network

 Browser sends requests

 Web site sends response pages, which may include code

 Interaction susceptible to network attacks

OS

Hardware

Web 
site

request

reply



Web Security Issues

 Secure communications between client & 
server

 HTTPS (HTTP over SSL) 

 User authentication & session management

 cookies & other methods

 Web application security

 program analysis

 Web site authentication (e.g., anti-phishing)

 certificates



HTTP: HyperText Transfer Protocol

 Browser sends HTTP requests to the server

 Methods: GET, POST, HEAD, …

 GET: to retrieve a resource (html, image, script, css,…)

 POST: to submit a form (login, register, …)

 HEAD: to retrieve only metadata

 Server replies with a HTTP response

 Stateless request/response protocol

 Each request is independent of previous requests

 Statelessness has a significant impact on design and 
implementation of applications 



Use Cookies to Store State Info

 Cookies
 A cookie is a piece of information created by a 

website to store information on your computer

Browser
Server

Enters form data

Response + cookies

Browser
Server

Request + cookies

Returns data

Http is stateless protocol; cookies add state



Cookies Fields

 An example cookie

 Name session-token

 Content "s7yZiOvFm4YymG….”

 Domain .amazon.com

 Path /

 Expires Monday, September 08, 2031 
7:19:41 PM



Cookies 

 Stored by the browser at the client

 Used by the web applications
 used for authenticating, tracking, and maintaining 

specific information about users
 e.g., site preferences, contents of shopping carts

 data may be sensitive

 may be used to gather information about specific 
users



Web Authentication via Cookies

 HTTP is stateless

 How does the server recognize a user who has 
signed in? 

 Servers can use cookies to store state on 
client
 After client successfully authenticates, server computes 

an authenticator and gives it to browser in a cookie

 Client cannot forge authenticator on his own (session id)

 With each request, browser presents the cookie

 Server verifies the authenticator



A Typical Session with Cookies
client server

POST /login.cgi

Set-Cookie:authenticator

GET /restricted.html
Cookie:authenticator

Restricted content

Verify that this
client is authorized

Check validity of
authenticator

Authenticators must be unforgeable and tamper-proof
(malicious clients shouldn’t be able to modify an existing authenticator)

How to design it?



Authentication cookies

 cookie(userID)=

 (userID||time, MAC(K,userID||time))

 time: time the cookie was created

 K:secret key known by server only

 The server needs to make sure that

 Current_time – time  <= cookie_duration

 If logged out or changed password before 
expiration date, then previous cookie gets 
invalidated



Cross Site Scripting



Client Side Scripting

 Web pages (HTML) can embed dynamic contents 
(code) that can execute on the browser

 JavaScript

 embedded in web pages and executed inside browser

 VBScript

 similar to JavaScript, only for Windows

 Java applets

 small pieces of Java bytecodes that execute in 
browsers



HTML and Scripting
<html>
<script>

var num1, num2, sum
num1 = prompt("Enter first number")
num2 = prompt("Enter second number")
sum = parseInt(num1) + parseInt(num2)
alert("Sum = " + sum)

</script>
</html>

Browser receives content, displays 
HTML and executes scripts



Scripts are Powerful

 Client-side scripting is powerful and flexible, 
and can access the following resources

 Local files on the client-side host

 read / write local files

 Webpage resources maintained by the browser

 Cookies



Browser as an Operating System

 Web users visit multiple websites simultaneously

 A browser serves web pages (which may contain 
programs) from different web domains

 i.e., a browser runs programs provided by mutually untrusted 
entities

 Running code one does not know/trust is dangerous

 A browser also maintains resources created/updated by web 
domains

 Browser must confine (sandbox) these scripts so that 
they cannot access arbitrary local resources

 Browser must have a security policy to manage/protect 
browser-maintained resources and to provide 
separation among mutually untrusted scripts



Same Origin Policy

 The basic security model enforced in the browser

 SoP isolates the scripts and resources downloaded 
from different origins

 E.g., evil.org scripts cannot access bank.com resources

 Use origin as the security principal

 Origin = domain name + protocol + port

 all three must be equal for origin to be considered the 
same



Problems with S-O Policy
 Poorly enforced on some browsers

 Particularly older browsers

 Limitations if site hosts unrelated pages
 Example: Web server often hosts sites for unrelated parties

 http://www.example.com/account/ 

 http://www.example.com/otheraccount/ 

 Same-origin policy allows script on one page to access 
properties of document from another

 Can be bypassed in Cross-Site-Scripting attacks

 Usability: Sometimes prevents desirable cross-origin 
resource sharing



Cross Site Scripting (XSS)

 Recall the basics

 scripts embedded in web pages run in browsers

 scripts can access cookies 

 get private information

 scripts controlled by the same-origin policy

 Why would XSS occur

 Web applications often take user inputs and use them 
as part of webpage (these inputs can have scripts)



XSS-Attack: General Overview

Post Forum Message:

Subject: GET Money for FREE !!!

Body:

<script> attack code </script>

1. Attacker sends malicious code

2. Server stores message

Did you know this?

.....

3. User requests message

4. Message is delivered by server

5. Browser executes script in message

GET Money for FREE !!!

<script> attack code </script>

Get /forum.jsp?fid=122&mid=2241

Attacker

Client

Web Server

GET Money for FREE !!!

<script> attack code </script>

!!! attack code !!!

This is only one example 

out of many attack 

scenarios!

Re: Error message on startup

.....
I found a solution!

.....
Can anybody help?

.....
Error message on startup

.....



How XSS Works on Online Blog 

 Everyone can post comments, which will be displayed 
to everyone who view the post

 Attacker posts a malicious comment that includes 
scripts (which reads local authentication credentials 
and sends to the attacker)

 Anyone who view the post can have local 
authentication cookies stolen

 Web apps  will check that posts do not include scripts, 
but the check sometimes fail.

 Bug in the web application. Attack happens in browser.



XSS Example
 Website allows posting of comments in a 

guestbook

 Server incorporates comments into page 
returned

<html>

<body>

<title>My Guestbook!</title>

Thanks for signing my guestbook!<br />

Here's what everyone else had to say:<br />

Joe: Hi! <br />

John: Hello, how are you? <br />

Jane: How does this guestbook work? <br />

</body>

 Attacker can post comment that includes 
malicious JavaScript

Evilguy: <script>alert("XSS Injection!"); 
</script> <br />

guestbook.html

<html>
<title>Sign My Guestbook!</title>
<body>
Sign my guestbook!
<form action="sign.php" method="POST">
<input type="text" name="name">
<input type="text" name="message" 

size="40">
<input type="submit" value="Submit">
</form>
</body>
</html>



Protection against XSS attacks

 Sanitize the input

 Make sure it does not contain any scripts!



SQL Injection Attack

 Many web applications take user input from a form

 Often this user input is used literally in the construction 

of a SQL query submitted to a database. For example:

SELECT user FROM table 

WHERE name = ‘user_input’;

 An SQL injection attack involves placing SQL 

statements in the user input



SQL: Standard Query Language

 SQL lets you access and manage (Query) databases 

 A database is a large collection of data organized in 
tables for rapid search and retrieval, with fields and 
columns

First_Name Last_Name Age

John Myers 19

Maria Palm 22

Alex Klein 21

….. …. ….

A field or
Column

A Record 
or Row Table: ENEE-459



SQL Syntax

 SELECT statement is used to select data 
FROM one or more tables in a database

 Result-set is stored in a result table

 WHERE clause is used to filter records

SELECT First_Name

FROM ENEE-459

WHERE age=21



SQL Syntax

SELECT Last_Name

FROM ENEE-459

WHERE age=21

ORDER BY First_Name ASC

LIMIT 3

 ORDER BY is used to order data following
one or more fields (columns)

 LIMIT  allows to retrieve just a certain
numbers of records (rows)



Login Authentication Query

• Standard query to authenticate users:
select * from users where user='$usern' AND pwd='$password'

 Classic SQL injection attacks
 Server side code sets variables $username and $passwd from user input 

to web form

 Variables passed to SQL query

select * from users where user='$username' AND pwd='$passwd'

 Special strings can be entered by attacker
select * from users where user=M' OR '1=1 AND pwd=M' OR '1=1

• Result: access obtained without password

• Solution: Careful with single quote characters 

• Filter them out!


