Introduction to
Secure Multi-Party Computation

Computer Systems Security
ENEE 457/CMSC 498E

Based on notes from:
Vitaly Shmatikov

Motivation

AN TP R G T B e W P O S ST B e VN P TP S G T e N T I O G ST B N W VPR O S TS R A

@ General framework for describing computation
between parties who do not trust each other

& Example: elections
e N parties, each one has a “Yes” or "No” vote
e Goal: determine whether the majority voted “Yes”, but
no voter should learn how other people voted
€ Example: auctions

e Each bidder makes an offer
— Offer should be committing! (can’t change it later)

e Goal: determine whose offer won without revealing
losing offers

More Examples

AN TP R G T B e W P O S ST B e VN P TP S G T e N T I O G ST B N W VPR O S TS R A

€ Example: distributed data mining

e Two companies want to compare their datasets without
revealing them
— For example, compute the intersection of two lists of hames
€ Example: database privacy

e Evaluate a query on the database without revealing the
query to the database owner

e Evaluate a statistical query on the database without
revealing the values of individual entries

e Many variations

A Couple of Observations

AN TP R G T B e W P O S ST B e VN P TP S G T e N T I O G ST B N W VPR O S TS R A

@ 1n all cases, we are dealing with distributed
multi-party protocols
e A protocol describes how parties are supposed to
exchange messages on the network
@ All of these tasks can be easily computed by a
trusted third party

e The goal of secure multi-party computation is to
achieve the same result without involving a trusted
third party

How to Define Security?

AN TP R G T B e W P O S ST B e VN P TP S G T e N T I O G ST B N W VPR O S TS R A

€ Must be mathematically rigorous

€ Must capture all realistic attacks that a malicious
participant may try to stage

@ Should be “abstract”

e Based on the desired “functionality” of the protocol,
not a specific protocol

e Goal: define security for an entire class of protocols

I t. I -t
AN I P G ST B e W P P S S ST e VS T P TP S G T B e N T R P O G ST B A W R PR O

€ K mutually distrustful parties want to jointly carry
out some task

® Model this task as a function

fi ({0,13%)% —>({0,1}*)"
/\ _L

K inputs (one per party); K outputs
each input is a bitstring

Assume that this functionality is computable in
probabilistic polynomial time

ORI T P A O R L O i ST

& Intuitive
a trustec

O TP S S S TS e VS T TP G T B e N T P O G ST

y, we want the protocol to behave “as if”
third party collected the parties’ inputs

and com

outed the desired functionality

o Computation in the ideal model is secure by definition!

N P D 2 T B P D S T B P I T B P I S T B AW P Y T

@ A protocol is secure if it emulates an ideal setting
where the parties hand their inputs to a “trusted
party,” who locally computes the desired outputs
and hands them back to the parties

[Goldreich-Micali-Wigderson 1987]

Adversary Models

AN TP R G T B e W P O S ST B e VN P TP S G T e N T I O G ST B N W VPR O S TS R A

€ Some of protocol participants may be corrupt

o If all were honest, would not need secure multi-party
computation

€ Semi-honest (aka passive; honest-but-curious)

e Follows protocol, but tries to learn more from received
messages than he would learn in the ideal model

¥ Malicious

e Deviates from the protocol in arbitrary ways, lies about
his inputs, may quit at any point

@ For now, we will focus on two-party protocols

Correctness and Security

AN TP R G T B e W P O S ST B e VN P TP S G T e N T I O G ST B N W VPR O S TS R A

€ How do we argue that the real protocol
“emulates” the ideal protocol?

@® Correctness

e All honest participants should receive the correct
result of evaluating function f
— Because a trusted third party would compute f correctly

@ Security

e All corrupt participants should learn no more from the
protocol than what they would learn in ideal model

o What does corrupt participant learn in ideal model?
— His input (obviously) and the result of evaluating f

Simulation

AN TP R G T B e W P O S ST B e VN P TP S G T e N T I O G ST B N W VPR O S TS R A

@ Corrupt participant’s view of the protocol = record
of messages sent and received
e In the ideal world, view consists simply of his input and
the result of evaluating f
¥ How to argue that real protocol does not leak
more useful information than ideal-world view?

& Key idea: simulation

o If real-world view (i.e., messages received in the real
protocol) can be simulated with access only to the ideal-
world view, then real-world protocol is secure

e Simulation must be indistinguishable from real view

SMC Definition (First Attempt)

LI TP S G ST S T TP S G T e N T I O G ST B e W TV PR i S ST B R O R PR I G ST A

@ Protocol for computlng f(* *) betw. A and B is secure
if there exist efficient simulator algorithms S, and Sg
such that

@ Correctness: for all input pairs, prot. output is correct.

@ Intuition: outputs received by honest parties are
indistinguishable from the correct result of evaluating f

‘SeCUI‘Ity VieWA(I‘ea| pI‘OtOCO|) ~ SA (gets to query ideal functionality)

VieWB(I‘ea| pI‘OtOCO|) ~ SB (gets to query ideal functionality)

o Intuition: a corrupt party’s view of the protocol can be
simulated from its input and output

€ This definition does not work! Why?

Randomized Ideal Functionality

AN TP R G T B e W P O S ST B e VN P TP S G T e N T I O G ST B N W VPR O S TS R A

@ Consider a coin flipping functionality

f()=(-,b) where b is random bit
e f() flips a coin and tells B the result; A gets no output

@ The following protocol “implements” f()

1. A chooses bit b randomly
2. Asends bto B
3. B outputs b

@1t is obviously insecure (why?)

®Yet it is correct and simulatable according to our
attempted definition (why?)

SMC Definition

AN TP R G T B e W P O S ST B e VN P TP S G T e N T I O G ST B N W VPR O S TS R A

@ Protocol for computing f(*,*) betw. A and B is secure if
there exist efficient simulator algorithms S, and Sg such
that:

@ Correctness: for all input pairs, prot. output is correct.
@ Security:
(view,(real prot), outputg(real prot)) ~ (S,, Yg)

(viewg(real prot), output,(real prot)) ~ (Sg, Ya)

e Intuition: if a corrupt party’s view of the protocol is correlated
with the honest party’s output, the simulator must be able to
capture this correlation

@ Does this fix the problem with coin-flipping f?

AN P P G ST B e W P P O S ST B e W TP R G T B R e W R PR O G

meesenccea [Rabin 1981]
€ Fundamental SMC primitive

e A inputs two bits, B inputs the index of one of A’s bits

e B learns his chosen bit, A learns nothing

— A does not learn which bit B has chosen; B does not learn the
value of the bit that he did not choose

e Generalizes to bitstrings, M instead of 2, etc.

Yao’s Protocol

AN TP R G T B e W P O S ST B e VN P TP S G T e N T I O G ST B N W VPR O S TS R A

slide 16

Yao’s Protocol

AN P i G ST B e W P S S ST B e W P P S G ST B S S I R G ST B S e W R R O

€ Compute any function securely
e ... in the semi-honest model

@ First, convert the function into a boolean circuit
N

/\
Alice’s inputs L\ Bob’s inputs

‘ ‘ | AND OR OR
| | | |

Z Z

Truth table: Truth table:
X Yy X y

|—~|—~OO><
l—*Ol—*O<
I—ll—*OOx
I—*OI—*O~<
=== O] N

HIOIOIOIN

1 Pick Random Keys For Each Wire

AN TP R G T B e W P O S ST B e VN P TP S G T e N T I O G ST B N W VPR O S TS R A

& Next, evaluate one gate securely
e |ater, generalize to the entire circuit

@ Alice picks two random keys for each wire
e One key corresponds to "0, the other to “"1”
e 6 keys in total for a gate with 2 input wires

kOZI I(12 z

Alice S Bob

kOXI klx /
Koy K

ly

2 Encrypt Truth Table

L IR R S TN S N TP S G T e N I O G ST B R S T P i S ST S R

SO RO R S

g

@ Alice encrypts each row of the truth table by

encrypting the output-wire key with the
corresponding pair of input-wire keys

kOZI k1z

Alice Bob
kOXI klx /
I(Oyl I(1y

By, (Eio (

X Eon(Er

. 2191 Encrypted truth table: —*0x} ~Kly

Original truth table: (24219 Eklx(EKOy(
11111

Eklx(Ekly(

(Oz))
(OZ))
(OZ))

(lz))

3: Send Garbled Truth Table
|
AN P e G ST B e W P P P S S ST e VS TP S G ST e S T I O G ST B A W Y

PRI AN A

® Alice randomly permutes (“garbles”) encrypted
truth table and sends it to Bob

Does not know which row of
Z garbled table corresponds to

hich row of original table
Kk Kk W
0zr ™1z

AND V

Alice S Bob
kOXI klx/
Koy K

1y
v (i (Ko2)) Ey 1, (Exgy(Koz))
o Fay(K0z)) Garbled truth table:)
Eklx(Ekoy(kOZ)) Eklx(Ekly((12))
By, (Exyy (Ki2)) EkOX(EkOy()

4: Send Keys For Alice’s Inputs

AN TP R G T B e W P O S ST B e VN P TP S G T e N T I O G ST B N W VPR O S TS R A

@ Alice sends the key corresponding to her input bit
e Keys are random, so Bob does not learn what this bit is

7 Learns K., where b’
kOZ' klz is AIice’s? input bit,
but not b’ (why?)
AND /
Alice Xl Yl Bob
Ky, K .
kOX’ klx If Alice’s bit is 1, she
Oyr Py simply sends k;, to Bob;
if 0, she sends k
Eklx(Ekoy(kOZ)) ! Ox
Garbled truth table: Exg,(Exy,(Koz))
Eklx(Ekly(klz))

Ekox(Ekoy(kOZ))

5: Use OT on Keys for Bob’s Input

AN TP R G T B e W P O S ST B e VN P TP S G T e N T I O G ST B N W VPR O S TS R A

Alice and Bob run oblivious transfer protocol
e Alice’s input is the two keys corresponding to Bob’s wire
e Bob’s input into OT is simply his 1-bit input on that wire

Z

kOZI I(12

Knows K, where b’ is
Alice’s input bit and K,
where b is his own input bit

Bob/

Alice X1 Y
Kow Kix (///Ruvn oblivious transfer

kOyl I(1y
Eklx(Ekoy(kOZ))
Garbled truth table: Exg,(Exy,(Koz))
Eklx(Ekly(klz))
EkOX(Ek()y(kOZ))

Alice’s input: ky,, ky,
Bob’s input: his bit b
Bob learns k,

What does Alice learn?

6 Evaluate Garbled Gate

S PR G ST R N T TP R G ST e N T TP O G T B e W T P S S ST B R O R PR R G ST A

Using the two keys that he learned, Bob decrypts
exactly one of the output-wire keys

e Bob does not learn if this key corresponds to 0 or 1
— Why is this important?

: Knows Ky, where b” is
kOZ, klz Allces_lnpgt bit apd Kpy |
AND where b is his own input bit
Alice J YL, o
Suppose b'=0, b=1
kOXI klx

kO ’ kl — This is the only row
Y Y Garbled truth table m Bob can decrypt.

kix\Ekay\ Mz) He learns K,
Ekox(Ekoy(kOZ))

7 Evaluate Entlre CII‘CUIt

AN TP R G T B e W P O S ST B e VN P TP S G T e N T I O G ST B N W VPR O S TS R A

#In this way, Bob evaluates entire garbled circuit
e For each wire in the circuit, Bob learns only one key

e It corresponds to 0 or 1 (Bob does not know which)
— Therefore, Bob does not learn intermediate values (why?)

fa\

Alice’s inputs AN Bob’s inputs

OR OR ‘
|| Q

Bob tells Alice the key for the final output wire and
she tells him if it corresponds to 0 or 1

e Bob does not tell her intermediate wire keys (why?)

Brief Discussion of Yao’'s Protocol

AN TP R G T B e W P O S ST B e VN P TP S G T e N T I O G ST B N W VPR O S TS R A

@ Function must be converted into a circuit
e For many functions, circuit will be huge

€ If m gates in the circuit and n inputs, then need
4m encryptions and n oblivious transfers
e Oblivious transfers for all inputs can be done in parallel

@®Yao's construction gives a constant-round protocol
for secure computation of any function in the
semi-honest model

e Number of rounds does not depend on the number of
inputs or the size of the circuit!

