
Computer Systems Security

ENEE 457/CMSC 498E

Based on notes from:

Vitaly Shmatikov

Introduction to

 Secure Multi-Party Computation

Motivation

General framework for describing computation
between parties who do not trust each other

Example: elections

• N parties, each one has a “Yes” or “No” vote

• Goal: determine whether the majority voted “Yes”, but
no voter should learn how other people voted

Example: auctions

• Each bidder makes an offer

– Offer should be committing! (can’t change it later)

• Goal: determine whose offer won without revealing
losing offers

More Examples

Example: distributed data mining

• Two companies want to compare their datasets without
revealing them

– For example, compute the intersection of two lists of names

Example: database privacy

• Evaluate a query on the database without revealing the
query to the database owner

• Evaluate a statistical query on the database without
revealing the values of individual entries

• Many variations

A Couple of Observations

In all cases, we are dealing with distributed
multi-party protocols

• A protocol describes how parties are supposed to
exchange messages on the network

All of these tasks can be easily computed by a
trusted third party

• The goal of secure multi-party computation is to
achieve the same result without involving a trusted
third party

How to Define Security?

Must be mathematically rigorous

Must capture all realistic attacks that a malicious
participant may try to stage

Should be “abstract”

• Based on the desired “functionality” of the protocol,
not a specific protocol

• Goal: define security for an entire class of protocols

Functionality

K mutually distrustful parties want to jointly carry
out some task

Model this task as a function

 f: ({0,1}*)K ({0,1}*)K

Assume that this functionality is computable in
probabilistic polynomial time

K inputs (one per party);

each input is a bitstring

K outputs

Ideal Model

Intuitively, we want the protocol to behave “as if”
a trusted third party collected the parties’ inputs
and computed the desired functionality

• Computation in the ideal model is secure by definition!

A B
x1

f2(x1,x2) f1(x1,x2)

x2

Slightly More Formally

A protocol is secure if it emulates an ideal setting
where the parties hand their inputs to a “trusted
party,” who locally computes the desired outputs
and hands them back to the parties
 [Goldreich-Micali-Wigderson 1987]

A B
x1

f2(x1,x2) f1(x1,x2)

x2

Adversary Models

Some of protocol participants may be corrupt

• If all were honest, would not need secure multi-party
computation

Semi-honest (aka passive; honest-but-curious)

• Follows protocol, but tries to learn more from received
messages than he would learn in the ideal model

Malicious

• Deviates from the protocol in arbitrary ways, lies about
his inputs, may quit at any point

For now, we will focus on two-party protocols

Correctness and Security

How do we argue that the real protocol
“emulates” the ideal protocol?

Correctness

• All honest participants should receive the correct
result of evaluating function f

– Because a trusted third party would compute f correctly

Security

• All corrupt participants should learn no more from the
protocol than what they would learn in ideal model

• What does corrupt participant learn in ideal model?

– His input (obviously) and the result of evaluating f

Simulation

Corrupt participant’s view of the protocol = record
of messages sent and received

• In the ideal world, view consists simply of his input and
the result of evaluating f

How to argue that real protocol does not leak
more useful information than ideal-world view?

Key idea: simulation

• If real-world view (i.e., messages received in the real
protocol) can be simulated with access only to the ideal-
world view, then real-world protocol is secure

• Simulation must be indistinguishable from real view

SMC Definition (First Attempt)

Protocol for computing f(*,*) betw. A and B is secure
if there exist efficient simulator algorithms SA and SB
such that

Correctness: for all input pairs, prot. output is correct.

Intuition: outputs received by honest parties are
indistinguishable from the correct result of evaluating f

Security: viewA(real protocol) SA (gets to query ideal functionality)

 viewB(real protocol) SB (gets to query ideal functionality)

• Intuition: a corrupt party’s view of the protocol can be
simulated from its input and output

This definition does not work! Why?

Randomized Ideal Functionality

Consider a coin flipping functionality

 f()=(-,b) where b is random bit

• f() flips a coin and tells B the result; A gets no output

The following protocol “implements” f()

1. A chooses bit b randomly

2. A sends b to B

3. B outputs b

It is obviously insecure (why?)

Yet it is correct and simulatable according to our
attempted definition (why?)

SMC Definition

Protocol for computing f(*,*) betw. A and B is secure if
there exist efficient simulator algorithms SA and SB such
that:

Correctness: for all input pairs, prot. output is correct.

Security:

 (viewA(real prot), outputB(real prot)) (SA, yB)

 (viewB(real prot), outputA(real prot)) (SB, yA)

• Intuition: if a corrupt party’s view of the protocol is correlated
with the honest party’s output, the simulator must be able to
capture this correlation

Does this fix the problem with coin-flipping f?

Oblivious Transfer (OT)

Fundamental SMC primitive

A B
b0, b1

bi

i = 0 or 1

• A inputs two bits, B inputs the index of one of A’s bits

• B learns his chosen bit, A learns nothing

– A does not learn which bit B has chosen; B does not learn the
value of the bit that he did not choose

• Generalizes to bitstrings, M instead of 2, etc.

[Rabin 1981]

slide 16

Yao’s Protocol

1

0 0 0

Yao’s Protocol

Compute any function securely

• … in the semi-honest model

First, convert the function into a boolean circuit

AND

x y

z

Truth table:

x y z

0 1 0
1 0 0

1 1 1

0 0 0

OR

x y

z

Truth table:

x y z

0 1 1
1 0 1

1 1

AND OR

AND

NOT

OR

AND

Alice’s inputs Bob’s inputs

1: Pick Random Keys For Each Wire

Next, evaluate one gate securely

• Later, generalize to the entire circuit

Alice picks two random keys for each wire

• One key corresponds to “0”, the other to “1”

• 6 keys in total for a gate with 2 input wires

AND

x y

z k0z, k1z

Alice Bob

k0x, k1x

k0y, k1y

2: Encrypt Truth Table

Alice encrypts each row of the truth table by
encrypting the output-wire key with the
corresponding pair of input-wire keys

AND

x y

z

k0z, k1z

Alice Bob

k0x, k1x

k0y, k1y

1

0 0 0

Original truth table:

x y z

0 1 0
1 0 0

1 1

Encrypted truth table:

Ek0x
(Ek0y

(k0z))

Ek0x
(Ek1y

(k0z))

Ek1x
(Ek0y

(k0z))

Ek1x
(Ek1y

(k1z))

3: Send Garbled Truth Table

Alice randomly permutes (“garbles”) encrypted
truth table and sends it to Bob

AND

x y

z

k0z, k1z

Alice Bob

k0x, k1x

k0y, k1y

Garbled truth table:

Ek0x
(Ek0y

(k0z))

Ek0x
(Ek1y

(k0z))

Ek1x
(Ek0y

(k0z))

Ek1x
(Ek1y

(k1z)) Ek0x
(Ek0y

(k0z))

Ek0x
(Ek1y

(k0z))

Ek1x
(Ek0y

(k0z))

Ek1x
(Ek1y

(k1z))

Does not know which row of
garbled table corresponds to
which row of original table

4: Send Keys For Alice’s Inputs

Alice sends the key corresponding to her input bit

• Keys are random, so Bob does not learn what this bit is

AND

x y

z k0z, k1z

Alice Bob

k0x, k1x

k0y, k1y

If Alice’s bit is 1, she
simply sends k1x to Bob;
if 0, she sends k0x

Learns Kb’x where b’
is Alice’s input bit,
but not b’ (why?)

Garbled truth table:

Ek0x
(Ek0y

(k0z))

Ek0x
(Ek1y

(k0z))
Ek1x

(Ek0y
(k0z))

Ek1x
(Ek1y

(k1z))

5: Use OT on Keys for Bob’s Input

Alice and Bob run oblivious transfer protocol

• Alice’s input is the two keys corresponding to Bob’s wire

• Bob’s input into OT is simply his 1-bit input on that wire

AND

x y

z

k0z, k1z

Alice Bob

k0x, k1x

k0y, k1y

Run oblivious transfer

Alice’s input: k0y, k1y

Bob’s input: his bit b

Bob learns kby

What does Alice learn?

Knows Kb’x where b’ is
Alice’s input bit and Kby

where b is his own input bit

Garbled truth table:

Ek0x
(Ek0y

(k0z))

Ek0x
(Ek1y

(k0z))
Ek1x

(Ek0y
(k0z))

Ek1x
(Ek1y

(k1z))

6: Evaluate Garbled Gate

Using the two keys that he learned, Bob decrypts
exactly one of the output-wire keys

• Bob does not learn if this key corresponds to 0 or 1

– Why is this important?

AND

x y

z

k0z, k1z

Alice Bob

k0x, k1x

k0y, k1y

Knows Kb’x where b’ is
Alice’s input bit and Kby

where b is his own input bit

Garbled truth table:

Ek0x
(Ek0y

(k0z))

Ek0x
(Ek1y

(k0z))
Ek1x

(Ek0y
(k0z))

Ek1x
(Ek1y

(k1z))

Suppose b’=0, b=1

This is the only row

Bob can decrypt.

He learns K0z

In this way, Bob evaluates entire garbled circuit

• For each wire in the circuit, Bob learns only one key

• It corresponds to 0 or 1 (Bob does not know which)

– Therefore, Bob does not learn intermediate values (why?)

Bob tells Alice the key for the final output wire and
she tells him if it corresponds to 0 or 1

• Bob does not tell her intermediate wire keys (why?)

7: Evaluate Entire Circuit

AND OR

AND

NOT

OR

AND

Alice’s inputs Bob’s inputs

Brief Discussion of Yao’s Protocol

Function must be converted into a circuit

• For many functions, circuit will be huge

If m gates in the circuit and n inputs, then need
4m encryptions and n oblivious transfers

• Oblivious transfers for all inputs can be done in parallel

Yao’s construction gives a constant-round protocol
for secure computation of any function in the
semi-honest model

• Number of rounds does not depend on the number of
inputs or the size of the circuit!

