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Motivation 

General framework for describing computation 
between parties who do not trust each other 

Example: elections 

• N parties, each one has a “Yes” or “No” vote 

• Goal: determine whether the majority voted “Yes”, but 
no voter should learn how other people voted 

Example: auctions 

• Each bidder makes an offer 

– Offer should be committing! (can’t change it later) 

• Goal: determine whose offer won without revealing 
losing offers 



More Examples 

Example: distributed data mining 

• Two companies want to compare their datasets without 
revealing them 

– For example, compute the intersection of two lists of names 

Example: database privacy 

• Evaluate a query on the database without revealing the 
query to the database owner 

• Evaluate a statistical query on the database without 
revealing the values of individual entries 

• Many variations 



A Couple of Observations 

In all cases, we are dealing with distributed 
multi-party protocols 

• A protocol describes how parties are supposed to 
exchange messages on the network 

All of these tasks can be easily computed by a 
trusted third party 

• The goal of secure multi-party computation is to 
achieve the same result without involving a trusted 
third party 

 



How to Define Security? 

Must be mathematically rigorous 

Must capture all realistic attacks that a malicious 
participant may try to stage 

Should be “abstract” 

• Based on the desired “functionality” of the protocol, 
not a specific protocol 

• Goal: define security for an entire class of protocols 



Functionality 

K mutually distrustful parties want to jointly carry 
out some task 

Model this task as a function 
 

 f: ({0,1}*)K ({0,1}*)K 

 

 

Assume that this functionality is computable in 
probabilistic polynomial time 

K inputs (one per party); 

each input is a bitstring 

K outputs 



Ideal Model 

Intuitively, we want the protocol to behave “as if” 
a trusted third party collected the parties’ inputs 
and computed the desired functionality 

• Computation in the ideal model is secure by definition! 

A B 
x1 

f2(x1,x2) f1(x1,x2) 

x2 



Slightly More Formally 

A protocol is secure if it emulates an ideal setting 
where the parties hand their inputs to a “trusted 
party,” who locally computes the desired outputs 
and hands them back to the parties   
    [Goldreich-Micali-Wigderson  1987] 

A B 
x1 

f2(x1,x2) f1(x1,x2) 

x2 



Adversary Models 

Some of protocol participants may be corrupt 

• If all were honest, would not need secure multi-party 
computation 

Semi-honest (aka passive; honest-but-curious) 

• Follows protocol, but tries to learn more from received 
messages than he would learn in the ideal model 

Malicious 

• Deviates from the protocol in arbitrary ways, lies about 
his inputs, may quit at any point 

For now, we will focus on two-party protocols 



Correctness and Security 

How do we argue that the real protocol 
“emulates” the ideal protocol? 

Correctness 

• All honest participants should receive the correct 
result of evaluating function f 

– Because a trusted third party would compute f correctly 

Security 

• All corrupt participants should learn no more from the 
protocol than what they would learn in ideal model 

• What does corrupt participant learn in ideal model? 

– His input (obviously) and the result of evaluating f 



Simulation 

Corrupt participant’s view of the protocol = record 
of messages sent and received  

• In the ideal world, view consists simply of his input and 
the result of evaluating f 

How to argue that real protocol does not leak 
more useful information than ideal-world view? 

Key idea: simulation 

• If real-world view (i.e., messages received in the real 
protocol) can be simulated with access only to the ideal-
world view, then real-world protocol is secure 

• Simulation must be indistinguishable from real view 



SMC Definition (First Attempt) 

Protocol for computing f(*,*) betw. A and B is secure 
if there exist efficient simulator algorithms SA and SB 
such that  

Correctness: for all input pairs, prot. output is correct. 

Intuition: outputs received by honest parties are 
indistinguishable from the correct result of evaluating f 

Security: viewA(real protocol)  SA (gets to query ideal functionality) 

   viewB(real protocol)  SB (gets to query ideal functionality) 

• Intuition: a corrupt party’s view of the protocol can be 
simulated from its input and output 

This definition does not work!  Why? 



Randomized Ideal Functionality 

Consider a coin flipping functionality 

  f()=(-,b) where b is random bit 

• f() flips a coin and tells B the result; A gets no output 

The following protocol “implements” f() 

1. A chooses bit b randomly 

2. A sends b to B 

3. B outputs b 

It is obviously insecure (why?) 

Yet it is correct and simulatable according to our 
attempted definition (why?) 



SMC Definition 

Protocol for computing f(*,*) betw. A and B is secure if 
there exist efficient simulator algorithms SA and SB such 
that: 

Correctness: for all input pairs, prot. output is correct. 

Security:  

 (viewA(real prot), outputB(real prot))  (SA, yB) 

  (viewB(real prot), outputA(real prot))  (SB, yA) 

• Intuition: if a corrupt party’s view of the protocol is correlated 
with the honest party’s output, the simulator must be able to 
capture this correlation 

Does this fix the problem with coin-flipping f? 



Oblivious Transfer (OT)  

Fundamental SMC primitive 

A B 
b0, b1 

bi 

i = 0 or 1 

• A inputs two bits, B inputs the index of one of A’s bits    

• B learns his chosen bit, A learns nothing 

– A does not learn which bit B has chosen; B does not learn the 
value of the bit that he did not choose 

• Generalizes to bitstrings, M instead of 2, etc. 

[Rabin  1981] 
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Yao’s Protocol 



1 

0 0 0 

Yao’s Protocol 

Compute any function securely  

• … in the semi-honest model 

First, convert the function into a boolean circuit 

AND 

x y 

z 

Truth table: 

x y z 

0 1 0 
1 0 0 

1 1 1 

0 0 0 

OR 

x y 

z 

Truth table: 

x y z 

0 1 1 
1 0 1 

1 1 

AND OR 

AND 

NOT 

OR 

AND 

Alice’s inputs Bob’s inputs 



1: Pick Random Keys For Each Wire 

Next, evaluate one gate securely 

• Later, generalize to the entire circuit  

Alice picks two random keys for each wire 

• One key corresponds to “0”, the other to “1” 

• 6 keys in total for a gate with 2 input wires 

AND 

x y 

z k0z, k1z 

Alice Bob 

k0x, k1x 

k0y, k1y 



2: Encrypt Truth Table 

Alice encrypts each row of the truth table by 
encrypting the output-wire key with the 
corresponding pair of input-wire keys  

AND 

x y 

z 

k0z, k1z 

Alice Bob 

k0x, k1x 

k0y, k1y 

1 

0 0 0 

Original truth table: 

x y z 

0 1 0 
1 0 0 

1 1 

Encrypted truth table: 

Ek0x
(Ek0y

(k0z)) 

Ek0x
(Ek1y

(k0z)) 

Ek1x
(Ek0y

(k0z)) 

Ek1x
(Ek1y

(k1z)) 



3: Send Garbled Truth Table 

Alice randomly permutes (“garbles”) encrypted 
truth table and sends it to Bob  

AND 

x y 

z 

k0z, k1z 

Alice Bob 

k0x, k1x 

k0y, k1y 

Garbled truth table: 

Ek0x
(Ek0y

(k0z)) 

Ek0x
(Ek1y

(k0z)) 

Ek1x
(Ek0y

(k0z)) 

Ek1x
(Ek1y

(k1z)) Ek0x
(Ek0y

(k0z)) 

Ek0x
(Ek1y

(k0z)) 

Ek1x
(Ek0y

(k0z)) 

Ek1x
(Ek1y

(k1z)) 

Does not know which row of 
garbled table corresponds to 
which row of original table 



4: Send Keys For Alice’s Inputs  

Alice sends the key corresponding to her input bit 

• Keys are random, so Bob does not learn what this bit is 

AND 

x y 

z k0z, k1z 

Alice Bob 

k0x, k1x 

k0y, k1y 

If Alice’s bit is 1, she 
simply sends k1x to Bob; 
if 0, she sends k0x 

Learns Kb’x where b’ 
is Alice’s input bit, 
but not b’ (why?) 

Garbled truth table: 

Ek0x
(Ek0y

(k0z)) 

Ek0x
(Ek1y

(k0z)) 
Ek1x

(Ek0y
(k0z)) 

Ek1x
(Ek1y

(k1z)) 



5: Use OT on Keys for Bob’s Input  

Alice and Bob run oblivious transfer protocol 

• Alice’s input is the two keys corresponding to Bob’s wire 

• Bob’s input into OT is simply his 1-bit input on that wire 

AND 

x y 

z 

k0z, k1z 

Alice Bob 

k0x, k1x 

k0y, k1y 

Run oblivious transfer 

Alice’s input: k0y, k1y 

Bob’s input: his bit b 

Bob learns kby 

What does Alice learn?  

Knows Kb’x where b’ is 
Alice’s input bit and Kby 

where b is his own input bit 

Garbled truth table: 

Ek0x
(Ek0y

(k0z)) 

Ek0x
(Ek1y

(k0z)) 
Ek1x

(Ek0y
(k0z)) 

Ek1x
(Ek1y

(k1z)) 



6: Evaluate Garbled Gate  

Using the two keys that he learned, Bob decrypts 
exactly one of the output-wire keys 

• Bob does not learn if this key corresponds to 0 or 1 

– Why is this important? 

AND 

x y 

z 

k0z, k1z 

Alice Bob 

k0x, k1x 

k0y, k1y 

Knows Kb’x where b’ is 
Alice’s input bit and Kby 

where b is his own input bit 

Garbled truth table: 

Ek0x
(Ek0y

(k0z)) 

Ek0x
(Ek1y

(k0z)) 
Ek1x

(Ek0y
(k0z)) 

Ek1x
(Ek1y

(k1z)) 

Suppose b’=0, b=1 

This is the only row  

Bob can decrypt. 

He learns K0z 



In this way, Bob evaluates entire garbled circuit 

• For each wire in the circuit, Bob learns only one key 

• It corresponds to 0 or 1 (Bob does not know which) 

– Therefore, Bob does not learn intermediate values (why?) 

 

 

 

 

 

Bob tells Alice the key for the final output wire and 
she tells him if it corresponds to 0 or 1 

• Bob does not tell her intermediate wire keys (why?)  

7: Evaluate Entire Circuit 

AND OR 

AND 

NOT 

OR 

AND 

Alice’s inputs Bob’s inputs 



Brief Discussion of Yao’s Protocol 

Function must be converted into a circuit 

• For many functions, circuit will be huge 

If m gates in the circuit and n inputs, then need 
4m encryptions and n oblivious transfers 

• Oblivious transfers for all inputs can be done in parallel 

Yao’s construction gives a constant-round protocol 
for secure computation of any function in the 
semi-honest model 

• Number of rounds does not depend on the number of 
inputs or the size of the circuit! 


