
Internet Layers

Application

Transport

Network

Link

Application

Transport

Network

Link

Network

Link

Network

Link

Ethernet
Fiber

Optics
Wi-Fi

Physical Layer

ARP requests and responses

IP: 192.168.1.1
MAC: 00:11:22:33:44:01

IP: 192.168.1.105
MAC: 00:11:22:33:44:02

ARP Cache

192.168.1.105 00:11:22:33:44:02

ARP Cache

192.168.1.1 00:11:22:33:44:01

Data

192.168.1.1 is at
00:11:22:33:44:01

192.168.1.105 is at
00:11:22:33:44:02

Poisoned ARP Caches

192.168.1.105 is at
00:11:22:33:44:03

Poisoned ARP Cache

192.168.1.1 00:11:22:33:44:03

Poisoned ARP Cache

192.168.1.105 00:11:22:33:44:03

Data Data

192.168.1.1 is at
00:11:22:33:44:03

192.168.1.1
00:11:22:33:44:01

192.168.1.105
00:11:22:33:44:02

192.168.1.106
00:11:22:33:44:03

How to prevent ARP poisoning

IP

Internet Protocol

• Connectionless

– Each packet is transported
independently from other
packets

• Unreliable

– Delivery on a best effort basis

– No acknowledgments

– Packets may be lost, reordered,
corrupted, or duplicated

• IP packets

– Encapsulate TCP and UDP
packets

– Encapsulated into link-layer
frames

Data link frame

IP packet

TCP or UDP packet

IP Addresses and Packets

• IP addresses

– IPv4: 32-bit addresses

– IPv6: 128-bit addresses

– E.g., 128.148.32.110

• IP header includes
– Source address

– Destination address

– Packet length (up to 64KB)

– Time to live (up to 255)

– IP protocol version

– Fragmentation information

– Transport layer protocol
information (e.g., TCP)

fragmentation info

source

destination

TTL protocol

lengthv

IP Routing

• A router bridges two or more networks

– Operates at the network layer

– Maintains tables to forward packets to the
appropriate network

– Forwarding decisions based solely on the
destination address

• Routing table

– Maps ranges of addresses to LANs or other
gateway routers

Internet Routes

• Internet Control Message Protocol (ICMP)

– Used for network testing and debugging

– Considered a network layer protocol

• Tools based on ICMP

– Ping: sends series of echo request messages and
provides statistics on roundtrip times and packet
loss

– Traceroute: sends series ICMP packets with
increasing TTL value to discover routes

ICMP Attacks

• Ping of death
– ICMP specifies messages must fit a single IP

packet (64KB)

– Send a ping packet that exceeds maximum size
using IP fragmentation

– Reassembled packet caused several operating
systems to crash due to a buffer overflow

• Smurf
– Ping a broadcast address using a spoofed source

address

Smurf Attack

Attacker
Victim

Amplifying
Network

echo
request

echo
response

echo
response

echo
response

IP Vulnerabilities

• Unencrypted transmission

– Eavesdropping possible at any intermediate host during routing

• No source authentication

– Sender can spoof source address, making it difficult to trace packet back to
attacker

• No integrity checking

– Entire packet, header and payload, can be modified while en route to
destination, enabling content forgeries, redirections, and man-in-the-middle
attacks

• No bandwidth constraints

– Large number of packets can be injected into network to launch a denial-of-
service attack

– Broadcast addresses provide additional leverage

TCP

Transmission Control Protocol

• TCP is a transport layer protocol guaranteeing reliable data transfer, in-
order delivery of messages and the ability to distinguish data for
multiple concurrent applications on the same host

• Most popular application protocols, including WWW, FTP and SSH are
built on top of TCP

• TCP takes a stream of 8-bit byte data, packages it into appropriately
sized segment and calls on IP to transmit these packets

• Delivery order is maintained by marking each packet with a sequence
number

• Every time TCP receives a packet, it sends out an ACK to indicate
successful receipt of the packet.

• TCP generally checks data transmitted by comparing a checksum of the
data with a checksum encoded in the packet

Ports

• TCP supports multiple concurrent applications on the same server

• Accomplishes this by having ports, 16 bit numbers identifying where

data is directed

• The TCP header includes space for both a source and a destination

port, thus allowing TCP to route all data

• In most cases, both TCP and UDP use the same port numbers for the

same applications

• Ports 0 through 1023 are reserved for use by known protocols.

• Ports 1024 through 49151 are known as user ports, and should be

used by most user programs for listening to connections and the like

• Ports 49152 through 65535 are private ports used for dynamic

allocation by socket libraries

TCP Packet Format
Bit Offset 0-3 4-7 8-15 16-18 19-31

0 Source Port Destination Port

32 Sequence Number

64 Acknowledgment Number

96 Offset Reserved Flags Window Size

128 Checksum Urgent Pointer

160 Options

>= 160 Payload

Establishing TCP Connections
• TCP connections are established through a three way handshake.

• The server generally has a passive listener, waiting for a connection
request

• The client requests a connection by sending out a SYN packet

• The server responds by sending a SYN/ACK packet, indicating an
acknowledgment for the connection

• The client responds by sending an ACK to the server thus establishing
connection

SYN
Seq = x

SYN-ACK
Seq = y

Ack = x + 1

ACK
Seq = x + 1
Ack = y + 1

SYN Flood

SYN Cookies

• A SYN flood leaves half-open connections
– The “SYN queue” is a data structure which keeps

track of these half-open connections

– We track the source IP and port of client, server IP
and port, seq# of client, seq# of server

– Idea: we don’t really need to keep all of this
• We just need enough to recognize the ACK of the client

• Can we get away without storing anything locally?

SYN Cookies: The Idea

• Store nothing locally

– ISN: Initial sequence number

– Encode all we need to remember in the ISN we send back
to the client

– t: a 32-bit counter which increments every 64 seconds

– K: a secret key selected by server for uptime of server

– Limitations: MSS limited to 8 values

t mod 32 MSS hash(client IP and port || server IP and port || t || K)

Server ISN

5 3 24

SYN Cookies: Details

• MSS: Maximum Segment Size
– Suggested by client, server then computes best value

• Details depend on whether they are on the same network, MTU
on network, etc

• Server can have only 8 values to encode here

• What happens when client replies with ACK?
– Client will reply with ISN+1 of server in the ACK

– Server then subtracts 1 and checks against hash of client IP
and port, server IP and port, t which matches in the lowest
5 bits, and K
• If match, put in SYN queue

• If not, ignore

SYN Cookies: Limitations

• Note that this will NOT prevent bandwidth-
saturation attacks
– This technique seeks only to prevent SYN queue

overflows

SYN Cookies: Implementation

• Standard in Linux and FreeBSD

echo 1 > proc/sys/net/ipv4/tcp_syncookies

Session Hijacking

• Also commonly known as TCP Session Hijacking

• A security attack over a protected network

• Attempt to take control of a network session

• Guess sequence numbers x and y and take over

• Make sure the victim does not send SYN-ACK by launching
DoS

SYN
Seq = x

SYN-ACK
Seq = y

Ack = x + 1

ACK
Seq = x + 1
Ack = y + 1

TCP Data Transfer

• During connection initialization using the three way handshake, initial
sequence numbers are exchanged

• The TCP header includes a 16 bit checksum of the data and parts of
the header, including the source and destination

• Acknowledgment or lack thereof is used by TCP to keep track of
network congestion and control flow and such

• TCP connections are cleanly terminated with a 4-way handshake

– The client which wishes to terminate the connection sends a FIN
message to the other client

– The other client responds by sending an ACK

– The other client sends a FIN

– The original client now sends an ACK, and the connection is
terminated

TCP Data Transfer and Teardown

Data

seq=x

Ack

seq=x+1

Data

seq=y

Ack

seq=y+1

Client Server Client Server

Fin seq=x

Ack seq=x+1

Fin seq=y

Ack seq=y+1

