

ENEE 459-C
Computer Security Access Control

&
Information Flow

Basic Access Control and Information Flow
Models

•  Discretionary access control (DAC)
–  Owner determines access rights
–  Typically identity-based access control: access rights are assigned

to users based on their identity
–  E.g., ACM

•  Mandatory access control (MAC)
–  System enforce system-wide rules for access control
–  E.g., law allows a court to access driving records without the

owners’ permission

DAC

•  In DAC the user (e.g., owner of resources/files) is
responsible for deciding how information is accessed

•  Local access decisions of users might conflict with each
other

•  Basic terms
–  Access control matrix
–  Security policy (specifying who has the access rights to what)
–  Security mechanism (Enforce security policies)

Access Control Matrix (ACM)

•  S: subjects, users or processes
•  O: objects, resources such as files, devices, messages, etc.
•  A: access matrix A: S × O → R (rights)
•  Example:

file 1 file 2 file 3

process 1 R W R R W E

process 2 R R W R

O S

ACM

•  ACM implementation
–  Space requirements: For m objects and n subjects: m x n
–  Generally the matrix is very sparse
–  Access control list (ACLs): describe the access policies for each object
–  Capabilities: describe the access rights each subject has

•  ACM does not cover
–  Time constraints

•  E.g., only allowed to access at day time

•  Advantages of ACLs? Disadvantages of ACLs?
•  Advantages of Capabilities? Disadvantages of Capabilities?

ACL in Unix

•  In a real system
–  Too many subjects and objects

•  Unix
–  Classify subjects into: owner, group, world
–  Use ACL for each object, but in terms of owner, group, world

uids and effective uids

•  Every user has a user id that is called uid.
•  When user A executes program B, program B is using A’s uid
•  However:
•  Programs can change to use the effective user id euid

–  Effective user id euid is the uid of the program owner

–  e.g. the passwd program changes to use its effective uid (root) so that
it can edit the /etc/passwd file

–  This special permission allows a user to access files and directories that are
normally only available to the owner

–  SUID bit enables this functionality

Sample SETUID Scenario

•  /dev/lp is owned by root with protection rw-------
–  This is used to access the printer

•  /bin/lp is owned by root with rwsr-xr-x (with SETUID=1)
•  User A issues a print process B
•  Process B has the same UID as user A
•  Process B executes exec(“/bin/lp”,…)
•  But lp is a setuid program and now B is using root’s UID
•  Consequently, /dev/lp can be accessed to print
•  When /bin/lp terminates so does B
•  User never got the access to /dev/lp

A simple program

§  Say I (cpap) own the program

FILEWRITE(file,uid,data): rwx--x--x
IF write_access(file,uid) = 0 //write_access checks real user_id

 exit;
ELSE
 open_for_write(file); //open_for_write checks for effective user_id

 write_data(file,data);

§  This program can only write to Bob’s file if executed by Bob.
§  Can it write to cpap’s file private if executed by Bob?

§  NO!! It is going to exit after the first access control check

§  What if cpap decides to make it setuid?

Problem with setUiD: Race conditions

§  Now, let’s see the setuid program

FILEWRITE(file,uid,data): rws--x--x
IF write_access(file,uid) = 0

 exit;
ELSE
 open_for_write(file);

 write_data(file,data);

§  This program can be executed by Bob
§  And it can write to cpap’s file private due to race condition

§  CAREFUL with SETUID programs!!

Attacker enters symbolic link
symlink(file,cpap/private)

DAC and MAC

•  When is DAC insufficient?
–  When owner cannot be trusted for the discretion of the data and

external protection of the data is necessary
–  E.g., DAC has the danger of right propagation

•  A can read X and write Y
•  B can read Y, but no access to X
•  A reads X, write the content of X to Y, B got access to X

•  MAC
–  Non-discretionary
–  Labels are assigned to subjects and objects
–  Owner has no special privileges
–  E.g., Bell-Lapadula, lattices models, SELinux by NSA

Traditional Models for MAC

•  Bell-LaPadula (BLP)
–  About confidentiality

•  Biba
–  About integrity with static/dynamic levels

Bell-LaPadula Security Model

•  The Bell-LaPadula (BLP) model is about information
confidentiality

•  It was developed to formalize the US Department of
Defense multilevel security policy

Bell – LaPadula - Details

•  Each user subject and information object
has a fixed security class – labels

•  Use the notation ≤ to indicate dominance
•  Simple Security (ss) property:

 the no read-up property
– A subject s has read access to an object o iff the class of the

subject C(s) is greater than or equal to the class of the object
C(o)

–  i.e. Subjects s can read Objects o iff C(o) ≤ C(s)

Access Control: Bell-LaPadula

Top Secret

Secret

Unclassified

Top Secret

Secret

Unclassified

Read OK

Access Control: Bell-LaPadula

Top Secret

Secret

Unclassified

Top Secret

Secret

Unclassified

Read OK

Access Control: Bell-LaPadula

Top Secret

Secret

Unclassified

Top Secret

Secret

Unclassified Read OK

Bell - LaPadula (2)

•  * property (star):
the no write-down property

–  A subject s can write to object p if C(s) ≤ C (p)

Access Control: Bell-LaPadula

Top Secret

Secret

Unclassified

Top Secret

Secret

Unclassified

Write OK

Access Control: Bell-LaPadula

Top Secret

Secret

Unclassified

Top Secret

Secret

Unclassified

Write OK

Access Control: Bell-LaPadula

Top Secret

Secret

Unclassified

Top Secret

Secret

Unclassified Write OK

Security Models - Biba

•  Based on the Cold War experiences, information integrity is
also important, and the Biba model, complementary to Bell-
LaPadula, is based on the flow of information where preserving
integrity is critical.

•  The “dual” of Bell-LaPadula

Integrity Control: Biba

•  Designed to preserve integrity, not limit access
•  Three fundamental concepts:

–  Simple Integrity Property – no read down
–  Star Integrity Property (*) – no write up
–  No execute up

Integrity Control: Biba

High Integrity

Medium Integrity

Low Integrity

High Integrity

Medium Integrity

Low Integrity

Read OK

Integrity Control: Biba

High Integrity

Medium Integrity

Low Integrity

High Integrity

Medium Integrity

Low Integrity Write OK

Combining integrity and privacy into a lattice

•  Integrity
–  High Integrity (H)
–  Medium Integrity (M)
–  Low integrity (L)
–  No integrity (N)

•  Confidentiality
–  {A,B} can be read by both A and B
–  {A} can be read only by A
–  {B} can be read only by B

Security Lattice

•  S is the set of all security levels
–  Suppose the integrity categories are H (high

integrity), M (medium integrity), L (low integrity)
–  Suppose the confidentiality categories are {A},{B},

{A,B} and {}.
–  Then States = [(H, {}), (H,{A}), (H,{B}), (H,{A,B}),

(M, {}), (M,{A}), (M,{B}), (M,{A,B}), (L, {})].

 Information Flow in a security lattice

L,{ }

M,{B} M,{A}
H,{ }

H,{A,B}

H,{B} H,{A}
M,{A,B}

M, { }

Information Flow – Informal

•  What do we mean by information flow?
–  y = x;
–  y = x/z;

•  A command sequence c causes a flow of information
from x to y if the value of y after the commands allows
one to deduce information about the value of x
–  tmp = x;
–  y = tmp;
–  Transitive

Information Flow Models

•  Two categories of information flows
–  explicit – operations causing flow are independent of value of x,

e.g. assignment operation, x=y
–  implicit - conditional assignment

•  (if x = 5 then y=1 else y=0)

•  Components
–  Lattice of security levels (L, ≤)
–  Set of labeled objects
–  Security policy

