
ENEE 457: Computer Systems Security
11/02/16

Lecture 17
Buffer Overflow Attacks Countermeasures

Charalampos (Babis) Papamanthou

Department of Electrical and Computer Engineering
University of Maryland, College Park



Address Space Layout Randomization
• Remember the reason we were able to guess the return address is that we assumed 

that the stack starts from the same address between two different executions of the 
program
• Or…the value of %ebp does not change between two executions of the program
• To get rid of this “bug”, we can just tell the OS to randomize the address from 

where the stack begins every two executions of the program
• Therefore, even if during debugging I get to see what the value of %ebp is, I will not know 

what the next value will be so that I can use it in my attack
• This countermeasure is called ASLR (address space layout randomization)
• For a 32-bit machine (2^32 addressable words), you can bruteforce and you can 

hit it.
• A system-wide option



Non-executable stack
• Turn stack into non-executable
• OS needs to do it
• So even if the attacker puts shellcode into the stack, it will never run
• In particular, there is a bit in hardware that decides whether a block of memory 

can be executable or not
• Turn off this bit for the stack

• Per application option
• You can indicate that when you compile



Can I defeat non-executable stack?
• Try to use other people’s code that is already in the system!
• Try to use shared library code already loaded in memory!
• E.g., there is a systemc(“/bin/sh”) function somewhere

• Finding the address of system call is easy
• Passing the right argument is hard
• The problem is when systemc is called, a new stack frame will be allocated, and 

the argument should be stored at ebp+8
• So you need to overwrite ebp + 8 with the address of your string
• But how can you know the new value of ebp?
• And how can you overwrite it?



StackGuard countermeasure
• Idea: Given source code, modify it so that it does not allow the buffer overflow 

attack to take place
• You need to store the initial return address to the heap, so that when you return 

you check to see whether the address you are returning to is the address that you 
initially stored
• You must store at the heap so that you cannot overwrite it.
• The observation is that you need to overwrite continuous portions of memory
• Put a random value before the return and check it before you return



Example code (secret should not be on the stack)



How about if we allocate secret on the heap?


