ENEE 457
Hiding Your Access Patterns from Google
Prof. Papamanthou
cpap@umd. edu

1 Introduction

In the age of big data, cloud computing comprises the key enabler for processing and analyzing massive amounts
of information. Services like Amazon S3 and EC2 offer easily accessible outsourced storage and computation,
gradually replacing our local hard drives and desktop machines. Nevertheless, many security concerns have arisen
in this new paradigm. In an untrusted cloud setting, users’ data and computations can be potentially tampered
with and sensitive data could be leaked to unauthorized parties. For cloud computing to be fully adopted by
businesses and individuals, security and privacy guarantees must be offered to the clients. For instance, how can
one store his private data in the cloud and still enable efficient processing without leaking sensitive information?
In particular, consider the following problem. A cloud server has been set up to store the prices A[1], A[2],..., A[n]
of shares 1,2,...,n. If someone is interested in buying a share x he would like to somehow download the infor-
mation A[z] without letting the server know that he is interested in share z (this information is sensitive since it
might reveal the strategy of the client). In this lab we will be coding up algorithms for that task which is called
oblivious access of an array A.

2 A Simple Algorithm For Oblivious Access: Reading Everything

A simple algorithm to perform an oblivious access is the following. Irrespective of the index x that you would like
to access, download all the elements A[i] from the remote server. After you download the elements, you can easily
retrieve A[x] without the server ever knowing what index you were interested in.

Let n be the size of the array that we want to access obliviously and B be the number of bits that are allocated
for each array cell (so that the total size of the array is n x B bits) Define oblivious efficiency f(n,B) of an

algorithm as
number of bits that the algorithm downloads to access one element

number of bits of that element
The smaller the above fraction is the better our algorithm is. Years of research work have concluded that this
fraction cannot be less than ¢ x log N for any constant number ¢ and as IV grows very large. What is the oblivious
efficiency of the above simple algorithm?

3 A Better Algorithm Using Random Permutations

Consider now an improvement of the above algorithm for the case where a client owns the array A initially and
then uploads it to the cloud so that he can access it obliviously later on. The main idea is the following. First create
a random permutation 7 of the indices 1,2,...,n so that index ¢ is mapped to 7[i] and so on (the server never
gets to see the random permutation—it is kept at the client machine as a secret). Then rearrange the elements of
array A so that element A[i] is stored at position 7[i] (and not at position 7). Then upload the permuted array
at the server. Whenever the client wants to access element i, he downloads A[r[i]] and therefore since 7[i] is a
random assignment of i to one element in {1,2,...,n} no information is revealed about i.

What is the oblivious efficiency of the above algorithm? Why does it contradict the ¢ x log N lower bound that
we talked about before? Does this algorithm really provide an oblivious access? What information is revealed to
the server if the client wants to access index 10 one million times?

4 An Improved Algorithm with Sublinear Oblivious Efficiency

Consider now a different algorithm:
Setup: Given an array A of n elements, the client extends A into an array of n + /n elements, with the
last y/n elements being the dummy elements. Then the preparation algorithm permutes A into Aperm of n+ /n


cpap@umd.edu

elements such that A[i] is stored at Aperm/[r[i]]. The algorithm also initializes an array C of \/n elements that
initially stores dummy elements. The client uploads the permuted array Aperm and C to the server and stores
the permutation 7 locally.

Oblivious access: To access obliviously index x the algorithm works as follows. Set count = 1 to be a variable
counting the number of accesses.

1. First, the client downloads array C. If A[z] is not stored in C, then the algorithm accesses Aperm|[r[z]]
to retrieve Afz]. If Az] is in C then the client has found Az] and for security purposes he accesses the
dummy position A[r[n + count]|;

2. Store (x,Afz]) in the first available position of array C (the position count) and upload array C again.
Increment count.

3. Finally, if count > \/n, download Aperm, reshuffle it using a new random permutation 7/, keep 7’ locally
and upload Aperm again. Set count = 1.

Answer the following questions:

1. Why do you think the above algorithm is secure? Argue how the above algorithm avoids the problems of
the previous algorithm.

2. What is the worst value of oblivious efficiency of the algorithm?

3. What is the average value of oblivious efficiency of the algorithm?



